×

Conditions for polynomial Liénard centers. (English) Zbl 1353.34040

The main result is the following theorem:
Theorem. Let \(V\) be the center variety of the Liénard system \[ \dot x= y,\quad y=-x-b_2 x^2- b_3 x^3- b_4 x^4- b_5 x^5- y(a_1x+ a_2 x^2+ a_3 x^3+ a_4 x^4+ a_5 x^5). \] Then \[ V= \bigcup^3_{i=1} V(J_i), \] where \[ \begin{aligned} J_1 &=\langle a_2- a_1b_2, 3a_4- 5a_3 b_2, 3a_5- 2a_3 b^2_2, 3b_4- 5b_2 b_3, 3b_5- 2b^2_2 b_3\rangle,\\ J_2 &=\langle a_2- a_1 b_2, a_3- a_1 b_3, a_4- a_1 b_4, a_5- a_1 b_5\rangle,\\ J_3 &=\langle a_2,a_4, b_2, b_4\rangle.\end{aligned} \]

MSC:

34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
68W30 Symbolic computation and algebraic computation
34A34 Nonlinear ordinary differential equations and systems
34C25 Periodic solutions to ordinary differential equations

Software:

SINGULAR
Full Text: DOI

References:

[1] Becker T, Weispfenning V. Gröbner Bases: A Computational Approach to Commutative Algebra. New York: Springer, 1993 · Zbl 0772.13010 · doi:10.1007/978-1-4612-0913-3
[2] Blows T R, Lloyd N G. The number of small-amplitude limit cycles of Liénard equations. Math Proc Cambridge, 1984, 95: 359-366 · Zbl 0532.34022 · doi:10.1017/S0305004100061636
[3] Buchberger B. Ein algorithmus zum auffinden der basiselemente des restklassenringes nach einem nulldimensional polynomideal. PhD thesis. Austria: Universität Innsbruck, 1965 · Zbl 1245.13020
[4] Cherkas L A. Conditions for a Liénard equation to have a center. Differ Equ, 1977, 12: 201-206 · Zbl 0353.34031
[5] Christopher C. An algebraic approach to the classification of centers in polynomial Liénard systems. J Math Anal Appl, 1999, 229: 319-329 · Zbl 0921.34033 · doi:10.1006/jmaa.1998.6175
[6] Cox D, Little J, O’Shea D. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd ed. New York: Springer, 2007 · Zbl 1118.13001 · doi:10.1007/978-0-387-35651-8
[7] De Maesschalck P, Dumortier F. Bifurcations of multiple relaxation oscillations in polynomial Liénard equations. Proc Amer Math Soc, 2011, 139: 2073-2085 · Zbl 1230.37061 · doi:10.1090/S0002-9939-2010-10610-X
[8] Dumortier F, Li C. Quadratic Liénard equations with quadratic damping. J Differential Equations, 1997, 139: 41-59 · Zbl 0881.34046 · doi:10.1006/jdeq.1997.3291
[9] Filippov A F. Sufficient conditions for existence of stable limit cycles of second order eqution (in Russian). Mat Sb, 1952, 30: 171-180 · Zbl 0046.31705
[10] Gasull A, Giacomini H. A new criterion for controlling the number of limit cycles of some generalized Li nard equations. J Differential Equations, 2002, 185: 54-73 · Zbl 1032.34028 · doi:10.1006/jdeq.2002.4172
[11] Gianni P, Trager B, Zacharias G. Gröbner bases and primary decomposition of polynomials. J Symbolic Comput, 1988, 6: 146-167 · Zbl 0667.13008 · doi:10.1016/S0747-7171(88)80040-3
[12] Greuel G-M, Pfister G. A Singular Introduction to Commutative Algebra, 2nd ed. Berlin: Springer, 2007 · Zbl 1133.13001
[13] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields (1983) · Zbl 0515.34001
[14] Hale J K. Ordinary Differential Equations, 2nd ed. Malabar: Krieger Publishing, 1980 · Zbl 0433.34003
[15] He Z, Zhang W. Subharmonic bifurcations in a perturbed nonlinear oscillation. Nonlinear Anal, 2005, 61: 1057-1091 · Zbl 1083.34033 · doi:10.1016/j.na.2005.01.095
[16] Hirsch, M. W.; Smale, S.; Devaney, R. L., Differential Equations, Dynamical Systems, and an Introduction to Chaos (2004) · Zbl 1135.37002
[17] Li C, Llibre J. Uniqueness of limit cycles for Li enard differential equations of degree four. J Differential Equations, 2012, 252: 3142-3162 · Zbl 1248.34035 · doi:10.1016/j.jde.2011.11.002
[18] Liénard A. Etude des oscillations entretenues. Rev Gen Electr, 1928, 23: 901-912; 946-954
[19] Llibre J, Mereu A C, Teixeira M A. Limit cycles of the generalized polynomial Liénard differential equations. Math Proc Cambridge, 2010, 148: 363-383 · Zbl 1198.34051 · doi:10.1017/S0305004109990193
[20] Mawhin J. Global Results for the Forced Pendulum Equation. Dordrecht: Elsevier, 2004 · Zbl 1091.34019
[21] Mcharg E A. A differential equation. J London Math Soc, 1947, 22: 83-85 · Zbl 0029.21302 · doi:10.1112/jlms/s1-22.2.83
[22] Opial Z. Sur un théorème de A. Filippoff. Ann Polon Math, 1958, 5: 67-75 · Zbl 0085.07402
[23] Reissig R, Sansone G, Conti R. Qualitative Theorie Nichtlinearer Differentialgleichungen. Rome: Cremonese, 1963 · Zbl 0114.04302
[24] Romanovski V G, Shafer D S. The Center and Cyclicity Problems: A Computational Algebra Approach. Boston: Birkhäuser, 2009 · Zbl 1192.34003
[25] Sansone G, Conti R. Nonlinear Differential Equations. New York: Macmillan, 1964 · Zbl 0128.08403
[26] Soudack A C, Barkham P G D. On the transient solution of the unforced duffing equation with large damping. Int J Control, 1971, 13: 767-769 · Zbl 0217.28301 · doi:10.1080/00207177108931981
[27] Sugie J, Hara T. Classification of global phase portraits of a system of Liénard type. J Math Anal Appl, 1995, 193: 264-281 · Zbl 0840.34020 · doi:10.1006/jmaa.1995.1234
[28] Wendel J G. On a van der Pol equation with odd coefficients. J London Math Soc, 1949, 24: 65-67 · Zbl 0031.39704 · doi:10.1112/jlms/s1-24.1.65
[29] Ye Y, Lo C. Theory of Limit Cycles, 2nd ed. Providence, RI: Amer Math Soc, 1986 · Zbl 0588.34022
[30] Yu S, Zhang J. On the center of the Liénard equation. J Differential Equations, 1993, 102: 53-61 · Zbl 0781.34022 · doi:10.1006/jdeq.1993.1021
[31] Zhang Z, Ding T, Huang W, et al. Qualitative Theory of Differential Equations. Providence, RI: Amer Math Soc, 1992 · Zbl 0779.34001
[32] Zhou Y, Wang X. On the conditions of a center of the Liénard equation. J Math Anal Appl, 1993, 100: 43-59 · Zbl 0809.34046 · doi:10.1006/jmaa.1993.1381
[33] Zou L, Chen X, Zhang W. Local bifurcations of critial periods for cubic Liénard equations with cubic damping. J Comput Appl Math, 2008, 222: 404-410 · Zbl 1163.34349 · doi:10.1016/j.cam.2007.11.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.