×

Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elements. (English) Zbl 1352.74396

Summary: We present a method to reduce mesh bias in dynamic fracture simulations using the finite element method with adaptive insertion of extrinsic cohesive zone elements along element boundaries. The geometry of the domain discretization is important in this setting because cracks are only allowed to propagate along element facets and can potentially bias the crack paths. To reduce mesh bias, we consider unstructured polygonal finite elements in this work. The meshes are generated with centroidal Voronoi tessellations to ensure element quality. However, the possible crack directions at each node are limited, making this discretization a poor candidate for dynamic fracture simulation. To overcome this problem, and significantly improve crack patterns, we propose adaptive element splitting, whereby the number of potential crack directions is increased at each crack tip. Thus, the crack is allowed to propagate through the polygonal element. Geometric studies illustrate the benefits of polygonal element discretizations employed with element splitting over other structured and unstructured discretizations for crack propagation applications. Numerical examples are performed and demonstrate good agreement with previous experimental and numerical results in the literature.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74A45 Theories of fracture and damage
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics

Software:

PolyTop; PolyMesher
Full Text: DOI

References:

[1] PaulinoGH, ParkK, CelesW, EspinhaR. Adaptive dynamic cohesive fracture simulation using nodal perturbation and edge‐swap operators. International Journal for Numerical Methods in Engineering2010; 84(11): 1303-1343. · Zbl 1202.74148
[2] CamachoG, OrtizM. Computational modelling of impact damage in brittle materials. International Journal of Solids and Structures1996; 33(20-22): 2899-2938. · Zbl 0929.74101
[3] BolanderJ, SukumarN. Irregular lattice model for quasistatic crack propagation. Physical Review B2005; 71(9): 094106-1-094106-12.
[4] EbeidaMS, MitchellSA. Uniform random Voronoi meshes. In Proceedings of the 20th International Meshing Roundtable. Springer: Paris, France, 2012; 273-290.
[5] PotyondyDO, WawrzynekPA, IngraffeaAR. An algorithm to generate quadrilateral or triangular element surface meshes in arbitrary domains with applications to crack propagation. International Journal for Numerical Methods in Engineering1995; 38(16): 2677-2701. · Zbl 0839.73072
[6] FreitasMO, WawrzynekPA, Cavalcante‐NetoJB, VidalCA, MarthaLF, IngraffeaAR. A distributed‐memory parallel technique for two‐dimensional mesh generation for arbitrary domains. Advances in Engineering Software2013; 59:38-52.
[7] PapouliaKD, VavasisSA, GangulyP. Spatial convergence of crack nucleation using a cohesive finite‐element model on a pinwheel‐based mesh. International Journal for Numerical Methods in Engineering2006; 67(1): 1-16. · Zbl 1110.74854
[8] RadinC, SadunL. The isoperimetric problem for pinwheel tilings. Communications in Mathematical Physics1996; 177(1): 255-263. · Zbl 0864.52012
[9] VelhoL, GomesJ. Variable resolution 4‐k meshes: concepts and applications. Computer Graphics Forum2000; 19(4): 195-212.
[10] ParkK, PaulinoGH, CelesW, EspinhaR. Adaptive mesh refinement and coarsening for cohesive zone modeling of dynamic fracture. International Journal for Numerical Methods in Engineering2012; 92(1): 1-35. · Zbl 1352.74469
[11] RimoliJJ, RojasJJ, KhemaniF. On the mesh dependency of cohesive zone models for crack propagation analysis. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, American Institute of Aeronautics and Astronautics, Reston, Virigina, 2012.
[12] RimoliJJ, RojasJJ. Meshing strategies for the alleviation of mesh‐induced effects in cohesive element models, 2013. arXiv preprint arXiv:13021161.
[13] GhoshS. Micromechanical Analysis and Multi‐Scale Modeling Using the Voronoi Cell Finite Element Method. CRC Press/Taylor & Francis: Boca Raton, Florida2011. · Zbl 1236.74002
[14] LiS, GhoshS. Multiple cohesive crack growth in brittle materials by the extended Voronoi cell finite element model. International Journal of Fracture2006; 141(3-4): 373-393. · Zbl 1197.74114
[15] LiS, GhoshS. Extended Voronoi cell finite element model for multiple cohesive crack propagation in brittle materials. International Journal for Numerical Methods in Engineering2006; 65(7): 1028-1067. · Zbl 1179.74152
[16] OoiET, YangZJ, GuoZY. Dynamic cohesive crack propagation modelling using the scaled boundary finite element method. Fatigue & Fracture of Engineering Materials & Structures2012; 35(8): 786-800.
[17] OoiET, SongC, Tin‐LoiF, YangZJ. Automatic modelling of cohesive crack propagation in concrete using polygon scaled boundary finite elements. Engineering Fracture Mechanics2012; 93:13-33.
[18] OoiET, SongC, Tin‐LoiF, YangZ. Polygon scaled boundary finite elements for crack propagation modelling. International Journal for Numerical Methods in Engineering2012; 91(3): 319-342. · Zbl 1246.74062
[19] SukumarN, BolanderJE. Voronoi‐based interpolants for fracture modelling. In Tessellations in the sciences: Virtues, Techniques and Applications of Geometric Tilings, edited by Rvan deWeygaert (ed.), GVegter (ed.), JRitzerveld (ed.), and VIcke (ed.), Springer‐Verlag, 2009.
[20] BishopJE. Simulating the pervasive fracture of materials and structures using randomly close packed Voronoi tessellations. Computational Mechanics2009; 44(4): 455-471. · Zbl 1253.74098
[21] BishopJE, StrackOE. A statistical method for verifying mesh convergence in Monte Carlo simulations with application to fragmentation. International Journal for Numerical Methods in Engineering2011; 88(3): 279-306. · Zbl 1242.74225
[22] BelytschkoT, LiuWK, MoranB. Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons, Inc.: West Sussex, England, 2000. · Zbl 0959.74001
[23] TalischiC, PaulinoGH, PereiraA, MenezesIFM. PolyMesher: a general‐purpose mesh generator for polygonal elements written in Matlab. Structural and Multidisciplinary Optimization2012; 45(3): 309-328. · Zbl 1274.74401
[24] TalischiC, PaulinoGH, PereiraA, MenezesIFM. Polygonal finite elements for topology optimization: a unifying paradigm. International Journal for Numerical Methods in Engineering2009; 82(6): 671-698. · Zbl 1188.74072
[25] WachspressEL. A Rational Finite Element Basis. Academic Press: New York, 1975. · Zbl 0322.65001
[26] SukumarN, TabarraeiA. Conforming polygonal finite elements. International Journal for Numerical Methods in Engineering2004; 6(12): 2045-2066. · Zbl 1073.65563
[27] TalischiC, PaulinoGH, PereiraA, MenezesIFM. PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes. Structural and Multidisciplinary Optimization2012; 45(3): 329-357. · Zbl 1274.74402
[28] MousaviSE, XiaoH, SukumarN. Generalized Gaussian quadrature rules on arbitrary polygons. International Journal for Numerical Methods in Engineering2009; 82(1): 1-26.
[29] NatarajanS, BordasS, Roy MahapatraD. Numerical integration over arbitrary polygonal domains based on Schwarz‐Christoffel conformal mapping. International Journal for Numerical Methods in Engineering2009; 80(1): 103-134. · Zbl 1176.74190
[30] HintonE, CampbellJS. Local and global smoothing of discontinuous finite element functions using a least squares method. International Journal for Numerical Methods in Engineering1974; 8(3): 461-480. · Zbl 0286.73066
[31] NewmarkNM. A method of computation for structural dynamics. Journal of the Engineering Mechanics Division1959; 85(7): 67-94.
[32] HintonE, RockT, ZienkiewiczOC. A note on mass lumping and related processes in the finite element method. Earthquake Engineering & Structural Dynamics1976; 4(3): 245-249.
[33] HughesTJR. The Finite Element Method. Prentice‐Hall, Inc.: Edgewood Cliffs, NJ, 1987. · Zbl 0634.73056
[34] KleinPA, FoulkJW, ChenEP, WimmerSA, GaoHJ. Physics‐based modeling of brittle fracture: cohesive formulations and the application of meshfree methods. Theoretical and Applied Fracture Mechanics2001; 37(1): 99-166.
[35] ParkK, PaulinoGH. Computational implementation of the PPR potential‐based cohesive model in ABAQUS: educational perspective. Engineering Fracture Mechanics2012; 93(C): 239-262.
[36] SongSH. Fracture of asphalt concrete: a cohesive zone modeling approach considering viscoelastic effects. Ph.D. Thesis, University of Illinois at Urbana‐Champaign, 2006.
[37] FalkM, NeedlemanA, RiceJ. A critical evaluation of cohesive zone models of dynamic fracture. Journal de Physique. IV2001; 11(5): 43-50.
[38] ParkK, PaulinoGH, RoeslerJR. A unified potential‐based cohesive model of mixed‐mode fracture. Journal of the Mechanics and Physics of Solids2009; 57(6): 891-908.
[39] ParkK. Potential‐based fracture mechanics using cohesive zone and virtual internal bond modeling. Ph.D. Thesis, University of Illinois at Urbana‐Champaign, 2009.
[40] CelesW, PaulinoGH, EspinhaR. A compact adjacency‐based topological data structure for finite element mesh representation. International Journal for Numerical Methods in Engineering2005; 64(11): 1529-1556. · Zbl 1122.74504
[41] PaulinoGH, CelesW, EspinhaR, ZhangZJ. A general topology‐based framework for adaptive insertion of cohesive elements in finite element meshes. Engineering with Computers2008; 24(1): 59-78.
[42] ErdoganF, SihGC. On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering1963; 85(4): 519-525.
[43] SihGC. Strain‐energy‐density factor applied to mixed mode crack problems. International Journal of Fracture1974; 10(3): 305-321.
[44] BelytschkoT, ChenH, XuJ, ZiG. Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. International Journal for Numerical Methods in Engineering2003; 58(12): 1873-1905. · Zbl 1032.74662
[45] SamCH, PapouliaKD, VavasisSA. Obtaining initially rigid cohesive finite element models that are temporally convergent. Engineering Fracture Mechanics September 2005; 72(14): 2247-2267.
[46] MotaA, SunW, OstienJT, FoulkJW, LongKN. Lie‐group interpolation and variational recovery for internal variables. Computational Mechanics2013; 52(6): 1281-1299. · Zbl 1398.74372
[47] DijkstraEW. A note on two problems in connexion with graphs. Numerische Mathematlk1959; 1(1): 269-227. · Zbl 0092.16002
[48] RockafellarRT, WetsRJ‐B, WetsM. Variational Analysis, Vol. 317, Springer: Heidelberg, Germany1998. · Zbl 0888.49001
[49] RittelD, MaigreH. A study of mixed‐mode dynamic crack initiation in PMMA. Mechanics Research Communications1996; 23(5): 475-481.
[50] RittelD, MaigreH. An investigation of dynamic crack initiation in PMMA. Mechanics of Materials1996; 23(3): 229-239.
[51] BuiHD, MaigreH, RittelD. A new approach to the experimental determination of the dynamic stress intensity factor. International Journal of Solids and Structures1992; 29(23): 2881-2895.
[52] RittelD, MaigreH, BuiHD. A new method for dynamic fracture toughness testing. Scripta Metallurgica et Materialia1992; 26(10): 1593-1598.
[53] HopkinsonB. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences1914; 89(612): 411-413.
[54] SamC‐H. A robust formulation and solution of initially rigid cohesive interface models. Ph.D. Thesis, Cornell University, 2005.
[55] MenouillardT, RethoreJ, CombescureA, BungH. Efficient explicit time stepping for the eXtended finite element method (X‐FEM). International Journal for Numerical Methods in Engineering2006; 68(9): 911-939. · Zbl 1128.74045
[56] MenouillardT, MoesN, CombescureA. An optimal explicit time stepping scheme for cracks modeled with X‐FEM. In IUTAM Symposium on Discretization Methods for Evolving Discontinuities, Springer: Lyon, France, 267-281, 2007. · Zbl 1209.74054
[57] MenouillardT, RethoreJ, MoesN, CombescureA, BungH. Mass lumping strategies for X‐FEM explicit dynamics: application to crack propagation. International Journal for Numerical Methods in Engineering2008; 74(3): 447-474. · Zbl 1159.74432
[58] SeeligT, GrossD, PothmannK. Numerical simulation of a mixed‐mode dynamic fracture experiment. International Journal of Fracture1999; 99(4): 325-338.
[59] ZhouF, MolinariJF. Dynamic crack propagation with cohesive elements: a methodology to address mesh dependency. International Journal for Numerical Methods in Engineering2004; 59(1): 1-24. · Zbl 1047.74074
[60] RabczukT, BelytschkoT. Cracking particles: a simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering2004; 61(13): 2316-2343. · Zbl 1075.74703
[61] SongJH, BelytschkoT. Cracking node method for dynamic fracture with finite elements. International Journal for Numerical Methods in Engineering2009; 77(3): 360-385. · Zbl 1155.74415
[62] FloaterM, GilletteA, SukumarN. Gradient bounds for Wachspress coordinates on polytopes, June 2013. arXiv preprint arXiv:1306.4385v2.
[63] FloaterMS, KósG, ReimersM. Mean value coordinates in 3D. Computer Aided Geometric Design2005; 22(7): 623-631. · Zbl 1080.52010
[64] EbeidaMS, MitchellSA, PatneyA, DavidsonAA, OwensJD. A simple algorithm for maximal poisson‐disk sampling in high dimensions. Computer Graphics Forum2012; 31(2pt4): 785-794.
[65] RashidMM, SelimoticM. A three‐dimensional finite element method with arbitrary polyhedral elements. International Journal for Numerical Methods in Engineering2006; 67(2): 226-252. · Zbl 1110.74855
[66] GainAL, TalischiC, PaulinoGH. On the virtual element method for three‐dimensional elasticity problems on arbitrary polyhedral meshes. Computer Methods in Applied Mechanics and Engineering, In press. DOI: 10.1016/j.cma.2014.05.005.
[67] Beirão da VeigaL, BrezziF, CangianiA, ManziniG, MariniLD, RussoA. Basic principles of virtual element methods. Mathematical Models and Methods in Applied Sciences2013; 23(01): 199-214. · Zbl 1416.65433
[68] BoffiD, BrezziF, FortinM. Mixed finite element methods and applications. In Springer Series in Computational Mathematics, vol. 44, Springer: Heidelberg, Germany, 2013. · Zbl 1277.65092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.