×

Toric networks, geometric \(R\)-matrices and generalized discrete Toda lattices. (English) Zbl 1352.37163

The combinatorics of toric networks and the double affine geometric \(R\)-matrix was used to define a three-parameter family of generalizations of the discrete Toda lattice. The integrals of motion and a spectral map for this system is constructed. The family of commuting time evolutions arising from the action of the \(R\)-matrix is explicitly linearized on the Jacobian of the spectral curve. The solution to the initial value problem is constructed using Riemann theta functions.

MSC:

37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K60 Lattice dynamics; integrable lattice equations
81R12 Groups and algebras in quantum theory and relations with integrable systems
14H70 Relationships between algebraic curves and integrable systems
14H40 Jacobians, Prym varieties

References:

[1] Berenstein, A., Kazhdan, D.: Geometric and unipotent crystals. Geom. Funct. Anal. Special Volume, Part I, pp. 188-236 (2000) · Zbl 1044.17006
[2] Etingof P.: Geometric crystals and set-theoretical solutions to the quantum Yang-Baxter equation. Commun. Algebra 31(4), 1961-1973 (2003) · Zbl 1020.17008 · doi:10.1081/AGB-120018516
[3] Fay, J.D.: Theta functions on Riemann surfaces. In: Lecture Notes in Mathematics, vol. 352. Springer, Berlin (1973) · Zbl 0281.30013
[4] Fock, V.V., Marshakov, A.: Loop Groups, Clusters, Dimers and Integrable Systems. arXiv:1401.1606 · Zbl 0957.37516
[5] Gekhtman, M., Shapiro, M., Tabachnikov, S., Vainshtein, A.: Integrable cluster dynamics of directed networks and pentagram maps. Adv. Math. arXiv:1406.1883 (to appear) · Zbl 1360.37148
[6] Goncharov A.B., Kenyon R.: Dimers and cluster integrable systems. Ann. Sci. éc. Norm. Supér. (4) 46(5), 747-813 (2013) · Zbl 1288.37025
[7] Hirota, R., Tsujimoto, S., Imai, T.: Difference scheme of soliton equations. In: Future Directions of Nonlinear Dynamics in Physical and Biological Systems (Lyngby, 1992). NATO Adv. Sci. Inst. Ser. B Phys. 312, 7-15 (Plenum Press, New York, 1993) · Zbl 0900.35332
[8] Inoue, R., Kuniba, A., Takagi, T.: Integrable structure of box-ball systems: crystal, Bethe ansatz, ultradiscretization and tropical geometry. J. Phys. A 45(7), 073001 (2012) · Zbl 1248.37002
[9] Inoue, R., Takenawa, T.: Tropical spectral curves and integrable cellular automata. Int. Math. Res. Not. IMRN 27, Art ID. rnn019 (2008) · Zbl 1155.37012
[10] Inoue R., Takenawa T.: A tropical analogue of Fay’s trisecant identity and an ultradiscrete periodic Toda lattice. Commun. Math. Phys. 289, 995-1021 (2009) · Zbl 1180.14058 · doi:10.1007/s00220-009-0815-3
[11] Inoue, R., Lam, T., Pylyavskyy, P.: On the cluster nature and quantization of geometric R-matrices. arXiv:1607.00722 · Zbl 1352.37163
[12] Iwao, S.: Solution of the generalized periodic discrete Toda equation. J. Phys. A 41(11), 115201 (2008) · Zbl 1138.37047
[13] Iwao, S.: Solution of the generalized periodic discrete Toda equation. II. Theta function solution. J. Phys. A 43(15), 155208 (2010) · Zbl 1192.37093
[14] Iwao, S.: Linearisation of the (M,K)-reduced non-autonomous discrete periodic KP equation. arXiv:0912.3333 · Zbl 0992.14506
[15] Kirillov, A.N.: Introduction to tropical combinatorics. In: Kirillov, A.N., Liskova, N. (eds.) Physics and Combinatorics 2000. Proceedings of the Nagoya 2000 International Workshop, pp. 82-150. World Scientific, Singapore (2001) · Zbl 0989.05127
[16] Khovanskii A.: Three Lectures on Newton Polyhedra (Newton Polyhedrons and Singularities). RIMS Kokyuroku 1233, 1-17 (2001) · Zbl 0992.14506
[17] Kang, S.-J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T., Nakayashiki, A.: Affine crystals and vertex models. In: Infinite analysis Part A (Kyoto 1991), pp. 449-484. Adv. Ser. Math. Phys. 16, World Sci. Publishing, River Edge (1992) · Zbl 0925.17005
[18] Kashiwara M., Nakashima T., Okado M.: Affine geometric crystals and limit of perfect crystals (English summary). Trans. Am. Math. Soc. 360(7), 3645-3686 (2008) · Zbl 1219.17010 · doi:10.1090/S0002-9947-08-04341-9
[19] Kashiwara M., Nakashima T., Okado M.: Tropical R maps and affine geometric crystals. Represent. Theory 14, 446-509 (2010) · Zbl 1220.17006 · doi:10.1090/S1088-4165-2010-00379-9
[20] Kajiwara K., Noumi M., Yamada Y.: Discrete dynamical systems with \[{W(A^(1)_m-1 \times A^{(1)}_n-1)}W\](A(1)m-1×An(1)-1) symmetry. Lett. Math. Phys. 60(3), 211-219 (2002) · Zbl 1077.37046 · doi:10.1023/A:1016298925276
[21] Lascoux, A.: Double crystal graphs. In: Studies in Memory of Issai Schur (Chevaleret/Rehovot, 2000). Progr. Math., vol. 210, pp. 95-114. Birkhäuser Boston, Boston (2003) · Zbl 1060.05097
[22] Lam T., Pylyavskyy P.: Affine geometric crystals in unipotent loop groups. Represent. Theory 15, 719-728 (2011) · Zbl 1250.17026 · doi:10.1090/S1088-4165-2011-00410-6
[23] Lam T., Pylyavskyy P.: Total positivity in loop groups. I: Whirls and curls. Adv. Math. 230(3), 1222-1271 (2012) · Zbl 1245.22013 · doi:10.1016/j.aim.2012.03.012
[24] Lam T., Pylyavskyy P.: Inverse problem in electrical cylindrical networks. SIAM J. Appl. Math. 72, 767-788 (2012) · Zbl 1250.94072 · doi:10.1137/110846476
[25] Lam T., Pylyavskyy P.: Crystals and total positivity on orientable surfaces. Selecta Math. (N.S.) 19(1), 173-235 (2013) · Zbl 1260.05043 · doi:10.1007/s00029-012-0094-2
[26] Mada, J., Idzumi, M., Tokihiro, T.: Path description of conserved quantities of generalized periodic box-ball systems. J. Math. Phys. 46(2), 022701 (2005) · Zbl 1076.37009
[27] Schützenberger, M.-P.: Promotion des morphismes d’ensembles ordonnes. Discrete Math. 2, 73-94 (1972) · Zbl 0279.06001
[28] Speyer D.: Perfect matchings and the octahedron recurrence. J. Algebr. Combin. 25(3), 309-348 (2007) · Zbl 1119.05092 · doi:10.1007/s10801-006-0039-y
[29] Takahashi D., Satsuma J.: A soliton cellular automaton. J. Phys. Soc. Japan 59(10), 3514-3519 (1990) · doi:10.1143/JPSJ.59.3514
[30] van Moerbeke P., Mumford D.: The spectrum of difference operators and algebraic curves. Acta Math. 143(1-2), 94-154 (1979) · Zbl 0502.58032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.