×

Sign-changing solutions for coupled nonlinear Schrödinger equations with critical growth. (English) Zbl 1352.35162

Summary: We consider the following nonlinear Schrödinger system with critical growth \[ - \operatorname{\Delta} u_j = \lambda_j u_j + \sum_{i = 1}^k \beta_{i j} | u_i |^{\frac{2^\ast}{2}} | u_j |^{\frac{2^\ast}{2} - 2} u_j, \text{ in } \operatorname{\Omega}, u_j = 0, \text{ on } \partial \operatorname{\Omega}, j = 1, \cdots, k, \] where \(\Omega\) is a bounded smooth domain in \(\mathbb{R}^N\), \(2^\ast = \frac{2 N}{N - 2}\), \(0 < \lambda_j < \lambda_1(\operatorname{\Omega})\), \(j = 1, \cdots, k\), \(\lambda_1(\operatorname{\Omega})\) is the first eigenvalue of with zero Dirichlet boundary condition. We consider the repulsive case, namely \(\beta_{j j} > 0\), \(j = 1, \cdots, k\), \(\beta_{i j} = \beta_{j i} \leq 0\), \(i \neq j\), \(i, j = 1, \cdots, k\). The existence of infinitely many sign-changing solutions as bound states is proved, provided \(N \geq 7\), by approximations of systems with subcritical growth and by the concentration analysis on approximating solutions.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35B38 Critical points of functionals in context of PDEs (e.g., energy functionals)
35A15 Variational methods applied to PDEs
35J50 Variational methods for elliptic systems
58J70 Invariance and symmetry properties for PDEs on manifolds
Full Text: DOI

References:

[1] Ambrosetti, A.; Colorado, E., Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75, 67-82 (2007) · Zbl 1130.34014
[2] Bahri, A.; Lions, P. L., Morse index of some min-max critical points I. Application to multiplicity results, Comm. Pure Appl. Math., 61, 1027-1037 (1988) · Zbl 0645.58013
[3] Bartsch, T.; Dancer, N.; Wang, Z.-Q., A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations, 37, 345-361 (2010) · Zbl 1189.35074
[4] Bartsch, T.; Wang, Z.-Q., Note on ground states of nonlinear Schrödinger systems, J. Partial Differ. Equ., 19, 200-207 (2006) · Zbl 1104.35048
[5] Bartsch, T.; Wang, Z.-Q.; Wei, J., Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2, 353-367 (2007) · Zbl 1153.35390
[6] Canino, A.; Degiovanni, M., Nonsmooth critical point theory and quasilinear elliptic equations, (Topol. Methods in Differential Equations and Inclusions. Topol. Methods in Differential Equations and Inclusions, Montreal, PQ, 1994. Topol. Methods in Differential Equations and Inclusions. Topol. Methods in Differential Equations and Inclusions, Montreal, PQ, 1994, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 472 (1995)) · Zbl 0851.35038
[7] Cao, D.; Peng, S.; Yan, S., Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth, J. Funct. Anal., 262, 2861-2901 (2012) · Zbl 1238.35038
[8] Chen, Z.; Lin, C.-S.; Zou, W., Multiple sign-changing and semi-nodal solutions for coupled Schrödinger equations, J. Differential Equations, 255, 4289-4311 (2013) · Zbl 1281.35073
[9] Chen, Z.; Lin, C.-S.; Zou, W., Infinitely many sign-changing and semi-nodal solutions for a nonlinear Schrödinger system, Ann. Sc. Norm. Super. Pisa Cl. Sci., 15, 859-897 (2016) · Zbl 1343.35101
[10] Chen, Z.; Lin, C.-S.; Zou, W., Sign-changing solutions and phase separation for an elliptic system with critical exponent, Comm. Partial Differential Equations, 39, 1827-1859 (2014) · Zbl 1308.35084
[11] Dancer, E. N.; Wei, J.; Weth, T., A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 953-969 (2010) · Zbl 1191.35121
[12] Devillanova, G.; Solimini, S., Concentration estimates and multiple solutions to elliptic problems at critical growth, Adv. Differential Equations, 7, 1257-1280 (2002) · Zbl 1208.35048
[13] Esry, B. D.; Greene, C. H.; Burke, J. P.; Bohn, J. L., Hartree Fock theory for double condensates, Phys. Rev. Lett., 78, 3594-3597 (1997)
[15] Ioffe, A.; Schwartzman, E., Metric critical point theory. Morse regularity and homotopic stability of a minimum, J. Math. Pures Appl., 75, 125-153 (1996) · Zbl 0852.58018
[16] Katriel, G., Mountain pass theorems and global homeomorphism theorems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11, 189-209 (1994) · Zbl 0834.58007
[17] Kilpeläinen, T.; Malý, J., The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math., 172, 137-161 (1994) · Zbl 0820.35063
[18] Lin, T.-C.; Wei, J., Ground state of \(N\)-coupled nonlinear Schrödinger equations in \(R^n\), Comm. Math. Phys., 255, 629-653 (2005) · Zbl 1119.35087
[19] Lin, T.-C.; Wei, J., Spikes in two coupled nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22, 403-439 (2005) · Zbl 1080.35143
[20] Liu, J.; Liu, X.; Wang, Z.-Q., Multiple mixed states of nodal solutions for nonlinear Schrödinger systems, Calc. Var. Partial Differential Equations, 52, 565-586 (2015) · Zbl 1311.35291
[21] Liu, Z.; Wang, Z.-Q., Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phys., 282, 721-731 (2008) · Zbl 1156.35093
[22] Liu, Z.; Wang, Z.-Q., Ground states and bound states of a nonlinear Schrödinger system, Adv. Nonlinear Stud., 10, 175-193 (2010) · Zbl 1198.35067
[23] Marino, A.; Prodi, G., Metodi perturbattivi nella teoria di Morse, Boll. Unione Mat. Ital., 11, 1-32 (1975) · Zbl 0311.58006
[24] Noris, B.; Ramos, M., Existence and bounds of positive solutions for a nonlinear Schrödinger system, Proc. Amer. Math. Soc., 138, 1681-1692 (2010) · Zbl 1189.35086
[25] Noris, B.; Tavares, H.; Terracini, S.; Verzini, G., Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Comm. Pure Appl. Math., 63, 267-302 (2010) · Zbl 1189.35314
[26] Sato, Y.; Wang, Z.-Q., On the least energy sign-changing solutions for a nonlinear elliptic system, Discrete Contin. Dyn. Syst., 35, 2151-2164 (2015) · Zbl 1306.35027
[27] Sato, Y.; Wang, Z.-Q., On the multiple existence of semi-positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30, 1-22 (2013) · Zbl 1457.35071
[28] Sirakov, S., Least energy solitary waves for a system of nonlinear Schrödinger equations in \(R^n\), Comm. Math. Phys., 271, 199-221 (2007) · Zbl 1147.35098
[29] Smale, S., An infinite dimensional version of Sard’s theorem, Amer. J. Math., 87, 861-866 (1965) · Zbl 0143.35301
[30] Solimini, S., Morse index estimates in min-max theorems, Manuscripta Math., 63, 421-453 (1989) · Zbl 0685.58010
[31] Tavares, H.; Terracini, S., Sign-changing solutions of competition-diffusion elliptic systems and optimal partition problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29, 279-300 (2012) · Zbl 1241.35046
[32] Terracini, S.; Verzini, G., Multipulse phase in k-mixtures of Bose-Einstein condensates, Arch. Ration. Mech. Anal., 194, 717-741 (2009) · Zbl 1181.35069
[33] Tian, R.; Wang, Z.-Q., Multiple solitary wave solutions of nonlinear Schrödinger systems, Topol. Methods Nonlinear Anal., 37, 203-223 (2011) · Zbl 1255.35101
[34] Tintarev, K., Concentration analysis and cocompactness · Zbl 1291.46019
[35] Tintarev, K.; Fieseler, K.-H., Concentration Compactness: Functional-Analytic Grounds and Applications (2007), Imperial College Press · Zbl 1118.49001
[36] Wei, J.; Weth, T., Nonradial symmetric bound states for a system of two coupled Schrödinger equations, Rend. Lincei Mat. Appl., 18, 279-293 (2007) · Zbl 1229.35019
[37] Wei, J.; Weth, T., Radial solutions and phase separation in a system of two coupled Schrödinger equations, Arch. Ration. Mech. Anal, 190, 83-106 (2008) · Zbl 1161.35051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.