×

Scattering in the energy space for the NLS with variable coefficients. (English) Zbl 1352.35158

Summary: We consider the NLS with variable coefficients in dimension \(n\geq 3\) \[ i\partial_tu-Lu+f(u)=0,\quad Lv=\nabla^b\cdot(a(x)\nabla^bv)-c(x)v,\qquad \nabla^b=\nabla +ib(x), \] on \(\mathbb R^n\) or more generally on an exterior domain with Dirichlet boundary conditions, for a gauge invariant, defocusing nonlinearity of power type \(f(u)\simeq |u|^{\gamma-1}u\). We assume that \(L\) is a small, long range perturbation of \(\Delta\), plus a potential with a large positive part. The first main result of the paper is a bilinear smoothing (interaction Morawetz) estimate for the solution. As an application, under the conditional assumption that Strichartz estimates are valid for the linear flow \(e^{itL}\), we prove global well posedness in the energy space for subcritical powers \(\gamma<1+\frac{4}{n-2}\), and scattering provided \(\gamma>1+\frac{4}{n}\). When the domain is \(\mathbb R^n\), by extending the Strichartz estimates due to D. Tataru [Am. J. Math. 130, No. 3, 571–634 (2008; Zbl 1159.35315)], we prove that the conditional assumption is satisfied and deduce well posedness and scattering in the energy space.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35L70 Second-order nonlinear hyperbolic equations
58J45 Hyperbolic equations on manifolds
35P25 Scattering theory for PDEs
35L71 Second-order semilinear hyperbolic equations
35B45 A priori estimates in context of PDEs

Citations:

Zbl 1159.35315

References:

[1] Baskin, D., Marzuola, J.L., Wunsch, J.: Strichartz estimates on exterior polygonal domains (2012). arXiv:1211.1211v3 · Zbl 1349.35315
[2] Blair, M.D., Smith, H.F., Sogge, C.D.: Strichartz estimates and the nonlinear Schrödinger equation on manifolds with boundary. Math. Ann. 354(4), 1397-1430 (2012) · Zbl 1262.58015 · doi:10.1007/s00208-011-0772-y
[3] Cacciafesta, F.: Smoothing estimates for the variable coefficients Schrödinger equation with electromagnetic potentials. J. Math. Anal. Appl. 402(1), 286-296 (2013) · Zbl 1307.35244 · doi:10.1016/j.jmaa.2013.01.040
[4] Cacciafesta, F., D’Ancona, P.: Weighted \[L^p\] Lp estimates for powers of selfadjoint operators. Adv. Math. 229(1), 501-530 (2012) · Zbl 1245.42010 · doi:10.1016/j.aim.2011.09.007
[5] Cacciafesta, F., D’Ancona, P., Luca’, R.: Helmholtz and dispersive equations with variable coefficients on exterior domains (2014). arXiv:1403.5288 · Zbl 1338.35143
[6] Cassano, B., Tarulli, M.: \[h^1\] h1-defocusing weakly coupled nls equations in low dimensions (2014). arXiv:1409.8416 · Zbl 1318.35103
[7] Cazenave, T.: Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10. New York University Courant Institute of Mathematical Sciences (2003) · Zbl 1055.35003
[8] Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on \[\mathbb{R}^3\] R3. Commun. Pure Appl. Math. 57(8), 987-1014 (2004) · Zbl 1060.35131 · doi:10.1002/cpa.20029
[9] Colliander, J., Czubak, M., Lee, J.J.: Interaction Morawetz estimate for the magnetic Schrödinger equation and applications. Adv. Differ. Equ. 19(9-10), 805-832 (2014) · Zbl 1296.35167
[10] D’Ancona, P., Fanelli, L.: \[L^p\] Lp-boundedness of the wave operator for the one dimensional Schrödinger operator. Commun. Math. Phys. 268(2), 415-438 (2006) · Zbl 1127.35053 · doi:10.1007/s00220-006-0098-x
[11] D’Ancona, P., Fanelli, L.: Strichartz and smoothing estimates of dispersive equations with magnetic potentials. Commun. Partial Differ. Equ. 33(4-6), 1082-1112 (2008) · Zbl 1160.35363 · doi:10.1080/03605300701743749
[12] D’Ancona, P., Fanelli, L., Vega, L., Visciglia, N.: Endpoint Strichartz estimates for the magnetic Schrödinger equation. J. Funct. Anal. 258(10), 3227-3240 (2010) · Zbl 1188.81061 · doi:10.1016/j.jfa.2010.02.007
[13] D’Ancona, P., Pierfelice, V.: On the wave equation with a large rough potential. J. Funct. Anal. 227(1), 30-77 (2005) · Zbl 1087.35058 · doi:10.1016/j.jfa.2005.05.013
[14] Duong, X.T., Ouhabaz, E.M., Sikora, A.: Plancherel-type estimates and sharp spectral multipliers. J. Funct. Anal. 196(2), 443-485 (2002) · Zbl 1029.43006 · doi:10.1016/S0022-1236(02)00009-5
[15] Erdoğan, M.B., Goldberg, M., Schlag, W.: Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions. Forum Math. 21, 687-722 (2009) · Zbl 1181.35208
[16] Fanelli, L., Vega, L.: Magnetic virial identities, weak dispersion and Strichartz inequalities. Math. Ann. 344(2), 249-278 (2009) · Zbl 1163.35005 · doi:10.1007/s00208-008-0303-7
[17] Ginibre, J., Velo, G.: Scattering theory in the energy space for a class of nonlinear Schrödinger equations. Journal de Mathématiques Pures et Appliquées. Neuvième Série 64(4), 363-401 (1985) · Zbl 0535.35069
[18] Grafakos, L., Oh, S.: The Kato-Ponce inequality. Commun. Partial Differ. Equ. 39, 1128-1157 (2014) · Zbl 1301.42026 · doi:10.1080/03605302.2013.822885
[19] Kato, T.: Wave operators and unitary equivalence. Pac. J. Math. 15, 171-180 (1965) · Zbl 0125.34902 · doi:10.2140/pjm.1965.15.171
[20] Kato, T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann. 162, 258-279 (1965/1966) · Zbl 0139.31203
[21] Leinfelder, H., Simader, C.G.: Schrödinger operators with singular magnetic vector potentials. Math. Z. 176, 1-19 (1981) · Zbl 0468.35038 · doi:10.1007/BF01258900
[22] Liskevich, V., Vogt, H., Voigt, J.: Gaussian bounds for propagators perturbed by potentials. J. Funct. Anal. 238(1), 245-277 (2006) · Zbl 1104.47043 · doi:10.1016/j.jfa.2006.04.010
[23] Morawetz, C.S.: Time decay for the nonlinear Klein-Gordon equations. Proc. R. Soc. Ser. A 306, 291-296 (1968) · Zbl 0157.41502 · doi:10.1098/rspa.1968.0151
[24] Morawetz, C.S.: Decay of solutions of the exterior problem for the wave equation. Commun. Pure Appl. Math. 28, 229-264 (1975) · Zbl 0304.35064 · doi:10.1002/cpa.3160280204
[25] O’Neil, R.: Convolution operators and L(p, q) spaces. Duke Math. J. 30, 129-142 (1963) · Zbl 0178.47701 · doi:10.1215/S0012-7094-63-03015-1
[26] Ouhabaz, E.M.: Gaussian upper bounds for heat kernels of second-order elliptic operators with complex coefficients on arbitrary domains. J. Oper. Theory 51(2), 335-360 (2004) · Zbl 1107.35056
[27] Ouhabaz, E.M.: Analysis of heat equations on domains, London Mathematical Society Monographs Series, vol. 31. Princeton University Press, Princeton (2005) · Zbl 1082.35003
[28] Robbiano, L., Zuily, C.: Strichartz estimates for Schrödinger equations with variable coefficients. Mémoires de la Société Mathématique de France. Nouvelle Série 101-102, vi+208 (2005) · Zbl 1097.35002
[29] Rodnianski, I., Schlag, W.: Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155(3), 451-513 (2004) · Zbl 1063.35035 · doi:10.1007/s00222-003-0325-4
[30] Staffilani, G., Tataru, D.: Strichartz estimates for a Schrödinger operator with nonsmooth coefficients. Commun. Partial Differ. Equ. 27(7-8), 1337-1372 (2002) · Zbl 1010.35015 · doi:10.1081/PDE-120005841
[31] Tao, T., Visan, M., Zhang, X.: The nonlinear Schrödinger equation with combined power-type nonlinearities. Commun. Partial Differ. Equ. 32(7-9), 1281-1343 (2007) · Zbl 1187.35245 · doi:10.1080/03605300701588805
[32] Tataru, D.: Parametrices and dispersive estimates for Schrödinger operators with variable coefficients. Am. J. Math. 130(3), 571-634 (2008) · Zbl 1159.35315 · doi:10.1353/ajm.0.0000
[33] Visciglia, N.: On the decay of solutions to a class of defocusing NLS. Math. Res. Lett. 16(5-6), 919-926 (2009) · Zbl 1194.35431 · doi:10.4310/MRL.2009.v16.n5.a14
[34] Voigt, J.: Absorption semigroups, their generators, and Schrödinger semigroups. J. Funct. Anal. 67, 167-205 (1986) · Zbl 0628.47027 · doi:10.1016/0022-1236(86)90036-4
[35] Yajima, K.: The \[W^{k, p}\] Wk,p-continuity of wave operators for schrödinger operators. III. Even-dimensional cases \[m\ge 4\] m≥4. J. Math. Sci. Univ. Tokyo 2(2), 311-346 (1995) · Zbl 0841.47009
[36] Yajima, \[K.: L^p\] Lp-boundedness of wave operators for two-dimensional Schrödinger operators. Commun. Math. Phys. 208(1), 125-152 (1999) · Zbl 0961.47004 · doi:10.1007/s002200050751
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.