×

From CM-finite to CM-free. (English) Zbl 1352.16016

Let \(\Lambda\) be an Artin algebra and denote by \(\mathsf{Gproj}(\Lambda)\) the category of finitely generated Gorenstein-projective \(\Lambda\)-modules. Recall from [A. Beligiannis, Adv. Math. 226, No. 2, 1973–2019 (2011; Zbl 1239.16016)] that \(\Lambda\) is said to be of finite Cohen-Macaulay type (CM-finite for short), if the set of isomorphism classes of indecomposable finitely generated Gorenstein-projective modules is finite. For a CM-finite algebra \(\Lambda\) consider the relative Auslander algebra \(\mathbf{Aus}(\Lambda):=\mathsf{End}_{\Lambda}(X)^{op}\), where \(X\) is the additive generator of \(\mathsf{Gproj}(\Lambda)\).
In the paper under review, the authors study CM-finite Artin algebras for not necessarily Gorenstein algebras. In particular, they show that the relative Auslander algebra \(\mathbf{Aus}(\Lambda)\) of a CM-finite Artin algebra \(\Lambda\) is CM-free, that is, the category of Gorenstein-projective \(\mathbf{Aus}(\Lambda)\)-modules coincides with the projective \(\mathbf{Aus}(\Lambda)\)-modules. Moreover, for an abelian category \(\mathcal{A}\) with enough projective objects the authors provide a description of the defect category \(\mathsf{D}^b_{\mathsf{defect}}(\mathcal{A}):=\mathsf{D}^b_{\mathsf{sg}}(\mathcal{A})/\mathsf{Image}{F}\) introduced by P. A. Bergh, S. Oppermann and D. A. Jorgensen [Q. J. Math. 66, No. 2, 459–471 (2015; Zbl 1327.13041)], where \(F\) is the canonical triangle embedding of the stable category \(\underline{\mathsf{Gproj}}(\mathcal{A})\) to the singularity category \(\mathsf{D}^b_{\mathsf{sg}}(\mathcal{A})\) (in the sense of Buchweitz and Orlov). The description is given as the Verdier quotient of \(\mathsf{K}^{-,b}(\mathsf{Proj}(\mathcal{A}))\) by the thick subcategory \[ \begin{split}\mathsf{K}^{-,b}_{\mathcal{G}}(\mathsf{Proj}(\mathcal{A})) \\ =\big\{(P,d) \in \mathsf{K}^{-,b}(\mathsf{Proj}(\mathcal{A})) \;| \;\exists n_0\in \mathbb{Z} \;\text{with} \;H^m(P)=0, \forall m\leq n_0, \mathsf{Ker}{d^{n_0}}\in \mathsf{GProj}(\mathcal{A}) \big\}. \end{split} \] As a consequence, for a CM-finite algebra \(\Lambda\) they show that there is a triangle equivalence between the defect category \(\mathsf{D}^b_{\mathsf{defect}}(\Lambda)\) of \(\Lambda\) and the singularity category \(\mathsf{D}^b_{\mathsf{sg}}(\mathbf{Aus}(\Lambda))\) of the relative Auslander algebra \(\mathbf{Aus}(\Lambda)\).

MSC:

16G10 Representations of associative Artinian rings
18E30 Derived categories, triangulated categories (MSC2010)
16G50 Cohen-Macaulay modules in associative algebras
18G25 Relative homological algebra, projective classes (category-theoretic aspects)

References:

[1] Asadollahi, J.; Hafezi, R.; Vahed, R., Gorenstein derived equivalences and their invariants, J. Pure Appl. Algebra, 218, 5, 888-903 (2014) · Zbl 1291.18013
[2] Auslander, M.; Bridger, M., Stable Module Theory, Mem. Amer. Math. Soc., vol. 94 (1969), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0204.36402
[3] Avramov, L. L.; Martsinkovsky, A., Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. Lond. Math. Soc., 85, 3, 393-440 (2002) · Zbl 1047.16002
[4] Auslander, M.; Reiten, I., Applications of contravariantly finite subcategories, Adv. Math., 86, 111-152 (1991) · Zbl 0774.16006
[5] Auslander, M.; Reiten, I.; Smalø, S. O., Representation Theory of Artin Algebras, Cambridge Studies in Adv. Math., vol. 36 (1995), Cambridge Univ. Press · Zbl 0834.16001
[6] Beligiannis, A., The homological theory of contravariantly finite subcategories: Auslander-Buchweitz contexts, Gorenstein categories and (co-)stabilization, Commun. Algebra, 28, 10, 4547-4596 (2000) · Zbl 0964.18006
[7] Beligiannis, A., Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras, J. Algebra, 288, 1, 137-211 (2005) · Zbl 1119.16007
[8] Beligiannis, A., On rings and algebras of finite Cohen-Macaulay type, Adv. Math., 226, 2, 1973-2019 (2011) · Zbl 1239.16016
[9] Beligiannis, A.; Krause, H., Thick subcategories and virtually Gorenstein algebras, Ill. J. Math., 52, 551-562 (2008) · Zbl 1200.16022
[10] Beligiannis, A.; Reiten, I., Homological and Homotopical Aspects of Torsion Theories, Mem. Amer. Math. Soc., vol. 188 (2007), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 1124.18005
[11] Bergh, P. A.; Jorgensen, D. A.; Oppermann, S., The Gorenstein defect category (2012), available in
[13] Buchweitz, R.-O.; Greuel, G.-M.; Schreyer, F.-O., Cohen-Macaulay modules on hypersurface singularities II, Invent. Math., 88, 1, 165-182 (1987) · Zbl 0617.14034
[14] Chen, X. W., Algebras with radical square zero are either self-injective or CM-free, Proc. Am. Math. Soc., 140, 1, 93-98 (2012) · Zbl 1254.18014
[15] Chen, X. W.; Ye, Y., Retractions and Gorenstein homological properties, Algebr. Represent. Theory, 17, 3, 713-733 (2014) · Zbl 1330.16009
[16] Christensen, L. W.; Piepmeyer, G.; Striuli, J.; Takahashi, R., Finite Gorenstein representation type implies simple singularity, Adv. Math., 218, 1012-1026 (2008) · Zbl 1148.14004
[17] Enochs, E. E.; Jenda, O. M.G., Gorenstein injective and projective modules, Math. Z., 220, 4, 611-633 (1995) · Zbl 0845.16005
[18] Enochs, E. E.; Jenda, O. M.G., Relative Homological Algebra, De Gruyter Expo. Math., vol. 30 (2000) · Zbl 0952.13001
[19] Gao, N.; Zhang, P., Gorenstein derived categories, J. Algebra, 323, 2041-2057 (2010) · Zbl 1222.18005
[20] Happel, D., Triangulated Categories in Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Notes Ser., vol. 119 (1988), Cambridge Univ. Press · Zbl 0635.16017
[21] Happel, D., On Gorenstein algebras, (Representation Theory of Finite Groups and Finite-Dimensional Algebras. Representation Theory of Finite Groups and Finite-Dimensional Algebras, Prog. Math., vol. 95 (1991), Birkhäuser: Birkhäuser Basel), 389-404 · Zbl 0759.16007
[22] Holm, H., Gorenstein homological dimensions, J. Pure Appl. Algebra, 189, 1-3, 167-193 (2004) · Zbl 1050.16003
[23] Hoshino, M., Algebras of finite self-injective dimension, Proc. Am. Math. Soc., 112, 3, 619-622 (1991) · Zbl 0737.16003
[24] Huang, Z. Y., Proper resolutions and Gorenstein categories, J. Algebra, 393, 1, 142-169 (2013) · Zbl 1291.18022
[25] Iyengar, S.; Krause, H., Acyclicity versus total acyclicity for complexes over noetherian rings, Doc. Math., 11, 207-240 (2006) · Zbl 1119.13014
[26] König, S.; Zimmermann, A., Derived Equivalences for Group Rings, With Contributions by Bernhard Keller, Markus Linckelmann, Jeremy Rickard and Raphaël Rouquier, Lecture Notes in Math., vol. 1685 (1998), Springer-Verlag: Springer-Verlag Berlin · Zbl 0898.16002
[27] Knörrer, H., Cohen-Macaulay modules on hypersurface singularities I, Invent. Math., 88, 1, 153-164 (1987) · Zbl 0617.14033
[28] Kuznetsov, A., Lefschetz decompositions and categorical resolutions of singularities, Sel. Math. New Ser., 13, 661-696 (2008) · Zbl 1156.18006
[29] Li, Z. W.; Zhang, P., Gorenstein algebras of finite Cohen-Macaulay type, Adv. Math., 223, 728-734 (2010) · Zbl 1184.16011
[30] Neeman, A., Triangulated Categories, Annals of Math. Studies, vol. 148 (2001), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0974.18008
[31] Orlov, D., Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Proc. Steklov Inst. Math., 246, 3, 227-248 (2004) · Zbl 1101.81093
[32] Rickard, J., Morita theory for derived categories, J. Lond. Math. Soc., 39, 436-456 (1989) · Zbl 0642.16034
[33] Ringel, C. M., The Gorenstein-projective modules for the Nakayama algebras I, J. Algebra, 385, 241-261 (2013) · Zbl 1341.16010
[34] Takahashi, R., On the category of modules of Gorenstein dimension zero, Math. Z., 251, 2, 249-256 (2005) · Zbl 1098.13014
[35] Verdier, J. L., Des catégories dérivées abéliennes, Astérisque, 239 (1996), xii+253 pp. (1997), with a preface by L. Illusie, edited and with a note by G. Maltsiniotis · Zbl 0882.18010
[36] Sather-Wagstaff, S.; Sharif, T.; White, D., Stability of Gorenstein categories, J. Lond. Math. Soc., 77, 2, 481-502 (2008) · Zbl 1140.18010
[37] Yoshino, Y., Approximations by modules of G-dimension zero, algebraic structures and their representations, (Contemp. Math., vol. 376 (2005), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 119-125 · Zbl 1081.13503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.