×

\(V\)-filtrations in positive characteristic and test modules. (English) Zbl 1352.13005

According to P. Deligne [Lect. Notes Math. 340, 165–196 (1973; Zbl 0266.14010)], the theory of nearby and vanishing cycles is an important tool to study of hypersurface singularities. Nearby and vanishing cycles are derived functors from the derived category of constructible sheaves on \(X\) (or \(X_{\text{ét}}\)) to the derived category of constructible sheaves on the fiber \(X_\theta\). These come equipped with an action of the (étale) fundamental group. For a complex manifold \(X\), the famous Riemann-Hilbert correspondence states that there is a functor from the bounded derived category of regular holonomic \(D_X\)-modules to the bounded derived category of constructible sheaves inducing an equivalence of category which respects the “six operations”.
By work of B. Malgrange [Astérisque 101–102, 243–267 (1983; Zbl 0528.32007)] and M. Kashiwara [Lect. Notes Math. 1016, 134–142 (1983; Zbl 0566.32022)] one has a direct construction of nearby and vanishing cycles for regular holonomic \(D_{X}\)-modules without passing through the Riemann-Hilbert correspondence. The key ingredient in this construction is the so-called \(V\)-filtration of a (regular holonomic) \(D_{X}\)-module whose associated graded pieces recover nearby and vanishing cycles. The construction of the \(V\)-filtration itself uses so-called Bernstein-Sato polynomials.
The author of the paper under review is concerned with a partial characteristic \(p\) analog of \(V\)-filtrations. The characteristic \(p\)-version of multiplier ideals are so-called test ideals. In work of M. Blickle [J. Algebr. Geom. 22, No. 1, 49–83 (2013; Zbl 1271.13009)] this point of view is further emphasized and the construction of test ideals is extended to modules. The author constructs a V -filtration for Cartier modules and show that this coincides with the test module filtration under some conditions. In particular, this means that the test ideal filtration (say in a polynomial ring) is uniquely determined by discreteness, rationality, the Brian-Skoda property and how the Cartier operator acts on the filtration.
The author uses work of M. Blickle and G. Böckle [J. Reine Angew. Math. 661, 85–123 (2011; Zbl 1239.13007); “Cartier crystals”, Preprint, arXiv:1309.1035] and of M. Emerton and M. Kisin [The Riemann-Hilbert correspondence for unit \(F\)-crystals. Paris: Société Mathématique de France (2004; Zbl 1056.14025)] to drive an analog of a Riemann-Hilbert correspondence. The paper is good for all researchers in the field of the subject.

MSC:

13A35 Characteristic \(p\) methods (Frobenius endomorphism) and reduction to characteristic \(p\); tight closure
14B05 Singularities in algebraic geometry

Software:

MathOverflow

References:

[1] Blickle, Manuel, Minimal \(\gamma \)-sheaves, Algebra Number Theory, 2, 3, 347-368 (2008) · Zbl 1183.13005 · doi:10.2140/ant.2008.2.347
[2] Blickle, Manuel, Test ideals via algebras of \(p^{-e} \)-linear maps, J. Algebraic Geom., 22, 1, 49-83 (2013) · Zbl 1271.13009 · doi:10.1090/S1056-3911-2012-00576-1
[3] Blickle, Manuel; B{\"o}ckle, Gebhard, Cartier modules: finiteness results, J. Reine Angew. Math., 661, 85-123 (2011) · Zbl 1239.13007 · doi:10.1515/CRELLE.2011.087
[4] blickleboecklecartierekequivalence Manuel Blickle and Gebhard B\`“ockle, A corresondence between crystals over function fields and Emerton-Kisin”s unit \(O_X[F]\)-modules, preprint (2012).
[5] blickleboecklecartiercrystals Manuel Blickle and Gebhard B\"ockle, Cartier crystals, arXiv:1309.1035 (2013). · Zbl 1239.13007
[6] blickleboecklecartierduality Manuel Blickle and Gebhard B\"ockle, Cartier crystals: Duality, preprint (2013). · Zbl 1239.13007
[7] Blickle, Manuel; Musta{\c{t}}{\v{a}}, Mircea; Smith, Karen E., Discreteness and rationality of \(F\)-thresholds, Michigan Math. J., 57, 43-61 (2008) · Zbl 1177.13013 · doi:10.1307/mmj/1220879396
[8] blicklestaeblerbernsteinsatocartier M. Blickle and A. St\"abler, Bernstein-Sato polynomials and test modules in positive characteristic, arXiv:1402.1333 (2014). · Zbl 1356.13002
[9] B{\`“o}ckle, Gebhard; Pink, Richard, Cohomological theory of crystals over function fields, EMS Tracts in Mathematics 9, viii+187 pp. (2009), European Mathematical Society (EMS), Z\'”urich · Zbl 1186.14002 · doi:10.4171/074
[10] Budur, Nero, On the \(V\)-filtration of \(\mathcal{D} \)-modules. Geometric methods in algebra and number theory, edited by Fedor Bogomolov and Yuri Tschinkel, Progr. Math. 235, 59-70 (2005), Birkh\"auser Boston, Boston, MA · Zbl 1102.32006 · doi:10.1007/0-8176-4417-2\_3
[11] Budur, Nero; Saito, Morihiko, Multiplier ideals, \(V\)-filtration, and spectrum, J. Algebraic Geom., 14, 2, 269-282 (2005) · Zbl 1086.14013 · doi:10.1090/S1056-3911-04-00398-4
[12] Groupes de monodromie en g\'eom\'etrie alg\'ebrique. II, Lecture Notes in Mathematics, Vol. 340, x+438 pp. (1973), Springer-Verlag, Berlin-New York
[13] Eisenbud, David, Commutative algebra, Graduate Texts in Mathematics 150, xvi+785 pp. (1995), Springer-Verlag, New York · Zbl 0819.13001 · doi:10.1007/978-1-4612-5350-1
[14] Emerton, Matthew; Kisin, Mark, An introduction to the Riemann-Hilbert correspondence for unit \(F\)-crystals. Geometric aspects of Dwork theory. Vols. I, II, 677-700 (2004), Walter de Gruyter GmbH & Co. KG, Berlin · Zbl 1104.14012
[15] Emerton, Matthew; Kisin, Mark, The Riemann-Hilbert correspondence for unit \(F\)-crystals, Ast\'erisque, 293, vi+257 pp. (2004) · Zbl 1056.14025
[16] Gabber, Ofer, Notes on some \(t\)-structures. Geometric aspects of Dwork theory. Vols. I, II, 711-734 (2004), Walter de Gruyter GmbH & Co. KG, Berlin · Zbl 1074.14018
[17] Groupes de monodromie en g\'eom\'etrie alg\'ebrique. I, Lecture Notes in Mathematics, Vol. 288, viii+523 pp. (1972), Springer-Verlag, Berlin-New York
[18] Grothendieck, A.; Dieudonn{\'e}, J. A., El\'ements de g\'eom\'etrie alg\'ebrique. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 166, ix+466 pp. (1971), Springer-Verlag, Berlin · Zbl 0203.23301
[19] hochsterlecturenotes M. Hochster, Foundations of tight closure theory, math.lsa.umich.edu/ hochster/711F07/fndtc.pdf (accessed: 2013-09-24).
[20] Hochster, Melvin; Huneke, Craig, Tight closure, invariant theory, and the Brian\c con-Skoda theorem, J. Amer. Math. Soc., 3, 1, 31-116 (1990) · Zbl 0701.13002 · doi:10.2307/1990984
[21] Hochster, Melvin; Huneke, Craig, Tight closure of parameter ideals and splitting in module-finite extensions, J. Algebraic Geom., 3, 4, 599-670 (1994) · Zbl 0832.13007
[22] Kashiwara, M., Vanishing cycle sheaves and holonomic systems of differential equations. Algebraic geometry, Tokyo/Kyoto, 1982, Lecture Notes in Math. 1016, 134-142 (1983), Springer, Berlin · Zbl 0566.32022 · doi:10.1007/BFb0099962
[23] Kunz, Ernst, On Noetherian rings of characteristic \(p\), Amer. J. Math., 98, 4, 999-1013 (1976) · Zbl 0341.13009
[24] Lipman, Joseph; Hashimoto, Mitsuyasu, Foundations of Grothendieck duality for diagrams of schemes, Lecture Notes in Mathematics 1960, x+478 pp. (2009), Springer-Verlag, Berlin · Zbl 1163.14001 · doi:10.1007/978-3-540-85420-3
[25] Malgrange, B., Polyn\^omes de Bernstein-Sato et cohomologie \'evanescente. Analysis and topology on singular spaces, II, III, Luminy, 1981, Ast\'erisque 101, 243-267 (1983), Soc. Math. France, Paris · Zbl 0528.32007
[26] Mebkhout, Z., Le formalisme des six op\'erations de Grothendieck pour les \(\mathcal{D}_X\)-modules coh\'erents, Travaux en Cours [Works in Progress] 35, x+254 pp. (1989), Hermann, Paris · Zbl 0686.14020
[27] Milne, James S., \'Etale cohomology, Princeton Mathematical Series 33, xiii+323 pp. (1980), Princeton University Press, Princeton, N.J. · Zbl 0433.14012
[28] Musta{\c{t}}{\u{a}}, Mircea, Bernstein-Sato polynomials in positive characteristic, J. Algebra, 321, 1, 128-151 (2009) · Zbl 1157.32012 · doi:10.1016/j.jalgebra.2008.08.014
[29] Musta{\c{t}}{\u{a}}, Mircea; Yoshida, Ken-Ichi, Test ideals vs. multiplier ideals, Nagoya Math. J., 193, 111-128 (2009) · Zbl 1162.13004
[30] Schwede, Karl, Test ideals in non-\( \mathbb{Q} \)-Gorenstein rings, Trans. Amer. Math. Soc., 363, 11, 5925-5941 (2011) · Zbl 1276.13008 · doi:10.1090/S0002-9947-2011-05297-9
[31] Schwede, Karl; Tucker, Kevin, On the behavior of test ideals under finite morphisms, J. Algebraic Geom., 23, 3, 399-443 (2014) · Zbl 1327.14173 · doi:10.1090/S1056-3911-2013-00610-4
[32] MO124960 A. St\"ablerx(mathoverflow.net/users/31051), Vanishing cycles of a locally constant sheaf for a smooth morphism in the \(l = p\)-case, MathOverflow, http://mathoverflow.net/questions/124960 (version: 2013-03-19).
[33] Stadnik, Theodore J., Jr., The V-filtration for tame unit \(F\)-crystals, Selecta Math. (N.S.), 20, 3, 855-883 (2014) · Zbl 1308.13008 · doi:10.1007/s00029-013-0139-1
[34] Takagi, Shunsuke, A characteristic \(p\) analogue of plt singularities and adjoint ideals, Math. Z., 259, 2, 321-341 (2008) · Zbl 1143.13007 · doi:10.1007/s00209-007-0227-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.