×

Reciprocal complementary distance equienergetic graphs. (English) Zbl 1352.05118

Summary: The reciprocal complementary distance (RCD) matrix of a graph \(G\) is defined as RCD(G)=\([rc_{ij}]\), in which \(rc_{ij}=\frac{1}{1+D-d_{ij}}\) if \(i\neq j\) and \(rc_{ij}=0\) if \(i=j\), where \(D\) is the diameter of \(G\) and \(d_{ij}\) is the distance between the \(i\)th and \(j\)th vertex of \(G\). The RCD-energy [RCDE(\(G\))] of \(G\) is defined as the sum of the absolute values of the eigenvalues of RCD-matrix of \(G\). Two graphs \(G_1\) and \(G_2\) are said to be RCD-equienergetic if RCDE(\(G_1\))=RCDE(\(G_2\)). In this paper, we obtain the RCD-eigenvalues and RCD-energy of the join of certain regular graphs and thus construct the non-RCD-cospectral, RCD-equienergetic graphs on \(n\) vertices, for all \(n\geq 9\).

MSC:

05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
05C12 Distance in graphs
Full Text: DOI

References:

[1] 1. F. Buckley and F. Harary, Distance in Graphs (Addison Wesley, Redwood, 1990). · Zbl 0688.05017
[2] 2. L. Chen, J. Liu and Y. Shi, Bounds on the matching energy of unicyclic odd-cycle graphs, MATCH Commun. Math. Comput. Chem.75 (2016) 315-330. genRefLink(128, ’S1793557116500844BIB002’, ’000374814100007’); · Zbl 1461.05041
[3] 3. L. Chen and Y. Shi, Maximal matching energy of tricyclic graphs, MATCH Commun. Math. Comput. Chem.73 (2015) 105-119. genRefLink(128, ’S1793557116500844BIB003’, ’000350704500009’); · Zbl 1464.05230
[4] 4. D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs: Theory and Applications (Academic Press, New York, 1980). · Zbl 0824.05046
[5] 5. K. C. Das and S. A. Mojallal, Relation between energy and (signless) Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem.74 (2015) 359-366. genRefLink(128, ’S1793557116500844BIB005’, ’000361847100011’); · Zbl 1462.05217
[6] 6. R. Gu, X. Li and J. Liu, Note on three results on Randić energy and incidence energy, MATCH Commun. Math. Comput. Chem.73 (2015) 61-71. genRefLink(128, ’S1793557116500844BIB006’, ’000350704500005’); · Zbl 1464.05237
[7] 7. I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz103 (1978) 1-22.
[8] 8. G. Indulal, I. Gutman and A. Vijayakumar, On distance energy of graphs, MATCH Commun. Math. Comput. Chem.60 (2008) 461-472. genRefLink(128, ’S1793557116500844BIB008’, ’000259765200018’); · Zbl 1199.05226
[9] 9. O. Ivanciuc, T. Ivanciuc and A. T. Balaban, The complementary distance matrix, a new molecular graph metric, ACH-Models Chem.137 (2000) 57-82.
[10] 10. D. Jenežić, A. Miličević, S. Nikolić and N. Trinajstić, Graph Theoretical Matrices in Chemistry (University of Kragujevac, Kragujevac, 2007). · Zbl 1293.92001
[11] 11. J. Li, J. M. Guo and W. C. Shiu, A note on Randić energy, MATCH Commun. Math. Comput. Chem.74 (2015) 389-398. genRefLink(128, ’S1793557116500844BIB011’, ’000361847100013’); · Zbl 1462.05089
[12] 12. X. Li, Y. Shi and I. Gutman, Graph Energy (Springer, New York, 2012). genRefLink(16, ’S1793557116500844BIB012’, ’10.1007
[13] 13. H. S. Ramane, D. S. Revankar, I. Gutman, S. B. Rao, B. D. Acharya and H. B. Walikar, Estimating the distance energy of graphs, Graph Theory Notes N.Y.55 (2008) 27-32. · Zbl 1199.05239
[14] 14. H. S. Ramane and A. S. Yalnaik, Reciprocal complementary distance spectra and reciprocal complementary distance energy of line graphs of regular graphs, Electron. J. Graph Theory Appl.3 (2015) 228-236. genRefLink(16, ’S1793557116500844BIB014’, ’10.5614
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.