×

On the diffuse interface method using a dual-resolution Cartesian grid. (English) Zbl 1351.76102

Summary: We investigate the applicability and performance of diffuse interface methods on a dual-resolution grid in solving two-phase flows. In the diffuse interface methods, the interface thickness represents a cut-off length scale in resolving the interfacial dynamics, and it was found that an apparent loss of mass occurs when the interface thickness is comparable to the length scale of flows [24]. From the accuracy and mass conservation point of view, it is desirable to have a thin interface in simulations. We propose to use a dual-resolution Cartesian grid, on which a finer resolution is applied to the volume fraction \(C\) than that for the velocity and pressure fields. Because the computation of \(C\) field is rather inexpensive compared to that required by velocity and pressure fields, dual-resolution grids can significantly increase the resolution of the interface with only a slight increase of computational cost, as compared to the single-resolution grid. The solution couplings between the fine grid for \(C\) and the coarse grid (for velocity and pressure) are delicately designed, to make sure that the interpolated velocity is divergence-free at a discrete level and that the mass and surface tension force are conserved. A variety of numerical tests have been performed to validate the method and check its performance. The dual-resolution grid appears to save nearly \(70 \%\) of the computational time in two-dimensional simulations and \(80\%\) in three-dimensional simulations, and produces nearly the same results as the single-resolution grid. Quantitative comparisons are made with previous studies, including Rayleigh Taylor instability, steadily rising bubble, and partial coalescence of a drop into a pool, and good agreement has been achieved. Finally, results are presented for the deformation and breakup of three-dimensional drops in simple shear flows.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76T10 Liquid-gas two-phase flows, bubbly flows
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

Gerris; PROST
Full Text: DOI

References:

[1] Brackbill, J.; Kothe, D. B.; Zemach, C., A continuum method for modeling surface tension, J. Comput. Phys., 100, 335-354 (1992) · Zbl 0775.76110
[2] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech., 31, 567-603 (1999)
[3] Li, J.; Renardy, Y.; Renardy, M., Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method, Phys. Fluids, 12, 269-282 (2000) · Zbl 1149.76454
[4] Renardy, Y.; Renardy, M., PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method, J. Comput. Phys., 183, 400-421 (2002) · Zbl 1057.76569
[5] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible 2-phase flow, J. Comput. Phys., 114, 146-159 (1994) · Zbl 0808.76077
[6] Chang, Y. C.; Hou, T. Y.; Merriman, B.; Osher, S., A level set formulation of Eulerian interface capturing methods for incompressible fluid flows, J. Comput. Phys., 124, 449-464 (1996) · Zbl 0847.76048
[7] Sethian, J. A.; Smereka, P., Level set methods for fluid interfaces, Annu. Rev. Fluid Mech., 35, 341-372 (2003) · Zbl 1041.76057
[8] Shin, S.; Abdel-Khalik, S.; Daru, V.; Juric, D., Accurate representation of surface tension using the level contour reconstruction method, J. Comput. Phys., 203, 493-516 (2005) · Zbl 1143.76561
[9] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Janz, Y.-J., A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169, 708-759 (2001) · Zbl 1047.76574
[10] Zhang, J.; Eckmann, D. M.; Ayyaswamy, P. S., A front tracking method for a deformable intravascular bubble in a tube with soluble surfactant transport, J. Comput. Phys., 214, 366-396 (2006) · Zbl 1137.76819
[11] Sussman, M.; Almgren, A. S.; Bell, J. B.; Colella, P.; Howell, L. H.; Welcome, M. L., An adaptive level set approach for incompressible two-phase flows, J. Comput. Phys., 148, 81-124 (1999) · Zbl 0930.76068
[12] Popinet, S., An accurate adaptive solver for surface-tension-driven interfacial flows, J. Comput. Phys., 228, 5838-5866 (2009) · Zbl 1280.76020
[13] Jacqmin, D., Calculation of two-phase Navier-Stokes flows using phase-field modelling, J. Comput. Phys., 155, 96-127 (1999) · Zbl 0966.76060
[14] Ding, H.; Spelt, P. D.M.; Shu, C., Diffuse interface model for incompressible two-phase flows with large density ratios, J. Comput. Phys., 226, 2078-2095 (2007) · Zbl 1388.76403
[15] Anderson, D. M.; McFadden, G. B.; Wheeler, A. A., Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30, 139-165 (1998) · Zbl 1398.76051
[16] Yue, P. T.; Feng, J. J.; Liu, C.; Shen, J., A diffuse-interface method for simulating two-phase flows of complex fluids, J. Fluid Mech., 515, 293-317 (2004) · Zbl 1130.76437
[17] Folch, R.; Casademunt, J.; Hernandez-Machado, A.; Ramirez-Piscina, L., Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach, Phys. Rev. E, 60, 1724 (1999)
[18] Ding, H.; Li, E. Q.; Zhang, F. H.; Sui, Y.; Spelt, P. D.M.; Thoroddsen, S. T., Ejection of small droplets in rapid droplet spreading, J. Fluid Mech., 697, 92-114 (2012) · Zbl 1250.76164
[19] Jacqmin, D., Contact-line dynamics of a diffuse fluid interface, J. Fluid Mech., 402, 57 (2000) · Zbl 0984.76084
[20] Ding, H.; Spelt, P. D.M., Inertial effects in droplet spreading: a comparison between diffuse interface and level-set simulations, J. Fluid Mech., 576, 287-296 (2007) · Zbl 1125.76024
[21] Ding, H.; Spelt, P. D.M., Onset of motion of a 3D droplet on a wall in shear flow at moderate Reynolds numbers, J. Fluid Mech., 599, 341-362 (2008) · Zbl 1151.76447
[22] Sui, Y.; Ding, H.; Spelt, P. D.M., Numerical simulations of flows with moving contact lines, Annu. Rev. Fluid Mech., 46, 97 (2014) · Zbl 1297.76177
[23] Kim, J., A continuous surface tension force formulation for diffuse-interface models, J. Comput. Phys., 204, 784-804 (2005) · Zbl 1329.76103
[24] Yue, P. T.; Zhou, C. F.; Feng, J. J., Spontaneous shrinkage of drops and mass conservation in phase-field simulations, J. Comput. Phys., 223, 1-9 (2007) · Zbl 1115.76077
[25] Magaletti, F.; Picano, F.; Chinappi, M.; Marino, L.; Casciola, C. M., The sharp-interface limit of the Cahn-Hilliard/Navier-Stokes model for binary fluids, J. Fluid Mech., 714, 95-126 (2013) · Zbl 1284.76116
[26] Tryggvason, G., Numerical simulations of the Rayleigh-Taylor instability, J. Comput. Phys., 75, 253-282 (1988) · Zbl 0638.76056
[27] Guermond, J. L.; Quartapelle, L., A projection FEM for variable density incompressible flows, J. Comput. Phys., 165, 167-188 (2000) · Zbl 0994.76051
[28] Mikaelian, K. O., Rayleigh-Taylor instability in finite-thickness fluids with viscosity and surface tension, Phys. Rev. E, 54, 3676-3680 (1996)
[29] Bhakta, A.; Ruckenstein, E., Decay of standing foams: drainage, coalescence and collapse, Adv. Colloid Interface Sci., 70, 1-124 (1997)
[30] Raes, F.; van Dingenen, R.; Vignati, E.; Wilson, J.; Putaud, J.-P.; Seinfeld, J. H.; Adams, P., Formation and cycling of aerosols in the global troposphere, Atmos. Environ., 34, 4215-4240 (2000)
[31] Gonipath, A.; Koch, D. L., Collision and rebound of small droplets in an incompressible continuum gas, J. Fluid Mech., 454, 145-201 (2002) · Zbl 1063.76098
[32] Thoroddsen, S. T.; Takehara, K., The coalescence cascade of a drop, Phys. Fluids, 12, 1265-1267 (2000) · Zbl 1149.76565
[33] Charles, G. E.; Mason, S. G., The mechanism of partial coalescence of liquid drops at liquid/liquid interfaces, J. Colloid Sci., 15, 105-122 (1960)
[34] Bach, G. A.; Koch, D. L.; Gonipath, A., Coalescence and bouncing of small aerosol droplets, J. Fluid Mech., 518, 157-185 (2004) · Zbl 1131.76352
[35] Blanchette, F.; Bigioni, T. P., Dynamics of drop coalescence at fluid interfaces, J. Fluid Mech., 620, 333-352 (2009) · Zbl 1156.76451
[36] Blanchette, F.; Bigioni, T. P., Partial coalescence of drops at liquid interfaces, Nat. Phys., 2, 254-257 (2006)
[37] Day, R. F.; Hinch, E. J.; Lister, J. R., Self-similar capillary pinch off of an inviscid fluid, Phys. Rev. Lett., 80, 704-707 (1998)
[38] Taylor, G. I., The viscosity of a fluid containing small drops of another fluid, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 138, 41-48 (1932) · JFM 58.0888.04
[39] Bhaga, D.; Weber, M. E., Bubbles in viscous liquids: shapes, wakes and velocities, J. Fluid Mech., 105, 61-85 (1981)
[40] Tsamopoulos, J.; Dimakopoulos, Y.; Chatzidai, N.; Karapetsas, G.; Pavlidis, M., Steady bubble rise and deformation in Newtonian and viscoplastic fluids and conditions for bubble entrapment, J. Fluid Mech., 601, 123-164 (2008) · Zbl 1151.76602
[41] Adami, S.; Hu, X. Y.; Adams, N. A., A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation, J. Comput. Phys., 229, 5011-5021 (2010) · Zbl 1346.76161
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.