×

Rational eigenvalue problems and applications to photonic crystals. (English) Zbl 1351.65084

Summary: We establish new analytic results for a general class of rational spectral problems. They arise e.g. in modelling photonic crystals whose capability to control the flow of light depends on specific features of the eigenvalues. Our results comprise a complete spectral analysis including variational principles and two-sided bounds for all eigenvalues, as well as numerical implementations. They apply to the eigenvalues between the poles where classical variational principles fail completely. In the application to multi-pole Lorentz models of permittivity functions we show, in particular, that our abstract two-sided eigenvalue estimates are optimal and we derive explicit bounds on the band gap above a Lorentz pole. A high order finite element method is used to compute the two-sided bounds for a selection of eigenvalues for several concrete Lorentz models, e.g. polaritonic materials and multi-pole models.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35P15 Estimates of eigenvalues in context of PDEs
82D25 Statistical mechanics of crystals

Software:

Concepts

References:

[1] Adamjan, V. M.; Langer, H., Spectral properties of a class of rational operator valued functions, J. Operator Theory, 33, 2, 259-277 (1995) · Zbl 0841.47010
[2] Antonietti, P. F.; Buffa, A.; Perugia, I., Discontinuous Galerkin approximation of the Laplace eigenproblem, Comput. Methods Appl. Mech. Engrg., 195, 25-28, 3483-3503 (2006) · Zbl 1168.65410
[3] Arlinskii, Y.; Belyi, S.; Tsekanovskii, E., Conservative Realizations of Herglotz-Nevanlinna Functions, Operator Theory: Advances and Applications, vol. 217 (2011), Birkhäuser/Springer Basel AG: Birkhäuser/Springer Basel AG Basel · Zbl 1240.47001
[4] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 5, 1749-1779 (2001) · Zbl 1008.65080
[5] Atkinson, F. V.; Langer, H.; Mennicken, R.; Shkalikov, A. A., The essential spectrum of some matrix operators, Math. Nachr., 167, 5-20 (1994) · Zbl 0831.47001
[6] Babuška, I.; Guo, B. Q., The \(h-p\) version of the finite element method for domains with curved boundaries, SIAM J. Numer. Anal., 25, 4, 837-861 (1988) · Zbl 0655.65124
[7] Ball, J. A., Linear systems, operator model theory and scattering: multivariable generalizations, (Operator Theory and Its Applications. Operator Theory and Its Applications, Winnipeg, MB, 1998. Operator Theory and Its Applications. Operator Theory and Its Applications, Winnipeg, MB, 1998, Fields Inst. Commun, vol. 25 (2000), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 151-178 · Zbl 0973.93021
[8] Bart, H.; Gohberg, I.; Kaashoek, M. A., Minimal Factorization of Matrix and Operator Functions, Operator Theory: Advances and Applications, vol. 1 (1979), Birkhäuser Verlag: Birkhäuser Verlag Basel-Boston, Mass · Zbl 0424.47001
[9] Birman, M. Sh.; Solomjak, M. Z., Spectral Theory of Selfadjoint Operators in Hilbert Space, Mathematics and Its Applications (Soviet Series) (1987), D. Reidel Publishing Co.: D. Reidel Publishing Co. Dordrecht, translated from the 1980 Russian original by S. Khrushchëv and V. Peller · Zbl 0744.47017
[10] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, vol. 15 (2008), Springer: Springer New York · Zbl 1135.65042
[11] Cessenat, M., Mathematical Methods in Electromagnetism, Series on Advances in Mathematics for Applied Sciences, vol. 41 (1996), World Scientific Publishing Co. Inc.: World Scientific Publishing Co. Inc. River Edge, NJ · Zbl 0917.65099
[12] Cuenin, J.-C.; Tretter, C., Non-symmetric perturbations of self-adjoint operators, J. Math. Anal. Appl., 441, 1, 235-258 (2016) · Zbl 1341.47017
[13] Davies, E. B.; Plum, M., Spectral pollution, IMA J. Numer. Anal., 24, 417-438 (2004) · Zbl 1062.65056
[14] Effenberger, C.; Kressner, D.; Engström, C., Linearization techniques for band structure calculations in absorbing photonic crystals, Internat. J. Numer. Methods Engrg., 89, 2, 180-191 (2012) · Zbl 1242.74110
[15] Engström, C., On the spectrum of a holomorphic operator-valued function with applications to absorptive photonic crystals, Math. Models Methods Appl. Sci., 20, 8, 1319-1341 (2010) · Zbl 1213.47013
[16] Eschwé, D.; Langer, M., Variational principles for eigenvalues of self-adjoint operator functions, Integral Equations Operator Theory, 49, 3, 287-321 (2004) · Zbl 1084.47011
[17] Figotin, A.; Kuchment, P., Band-gap structure of spectra of periodic dielectric and acoustic media. II. Two-dimensional photonic crystals, SIAM J. Appl. Math., 56, 6, 1561-1620 (1996) · Zbl 0868.35009
[18] Frauenfelder, P.; Lage, C., Concepts—an object-oriented software package for partial differential equations, M2AN Math. Model. Numer. Anal., 36, 5, 937-951 (2002) · Zbl 1032.65128
[19] Ghasemi, A. H.B.; Mandegarian, S.; Kebriti, H.; Latifi, H., Bandgap generation and enhancement in polaritonic cylinder square-lattice photonic crystals, J. Opt., 14, 5, Article 055103 pp. (2012)
[20] Giani, S.; Hall, E. J.C., An a posteriori error estimator for hp-adaptive discontinuous Galerkin methods for elliptic eigenvalue problems, Math. Models Methods Appl. Sci., 22, 10, Article 1250030 pp. (2012) · Zbl 1257.65062
[21] Hesthaven, J. S.; Warburton, T., Nodal Discontinuous Galerkin MethodsAlgorithms, Analysis, and Applications, Texts in Applied Mathematics, vol. 54 (2008), Springer: Springer New York · Zbl 1134.65068
[22] Hoang, V.; Plum, M.; Wieners, C., A computer-assisted proof for photonic band gaps, Z. Angew. Math. Phys., 60, 6, 1035-1052 (2009) · Zbl 1180.78017
[23] Huang, K. C.; Lidorikis, E.; Jiang, X.; Joannopoulos, J. D.; Nelson, K. A.; Bienstman, P.; Fan, S., Nature of lossy Bloch states in polaritonic photonic crystals, Phys. Rev. B, 69, 195, Article 111 pp. (2004)
[24] Joannopoulos, J. D.; Johnson, S. G.; Winn, J. N.; Meade, R. D., Photonic Crystals: Molding the Flow of Light (2008), Princeton University Press: Princeton University Press NJ · Zbl 1144.78303
[25] Karma, O., Approximation in eigenvalue problems for holomorphic Fredholm operator functions. I, Numer. Funct. Anal. Optim., 17, 3-4, 365-387 (1996) · Zbl 0880.47009
[26] Karma, O., Approximation in eigenvalue problems for holomorphic Fredholm operator functions. II, Numer. Funct. Anal. Optim., 17, 3-4, 389-408 (1996) · Zbl 0880.47010
[27] Karpisz, T.; Salski, B.; Szumska, A.; Klimczak, M.; Buczynski, R., FDTD analysis of modal dispersive properties of nonlinear photonic crystal fibers, Opt. Quantum Electron., 47, 1, 99-106 (2015)
[28] Kato, T., Perturbation Theory for Linear Operators, Classics Math. (1995), Springer-Verlag: Springer-Verlag Berlin, reprint of the 1980 edition · Zbl 0836.47009
[29] Knyazev, A. V.; Osborn, J. E., New a priori FEM error estimates for eigenvalues, SIAM J. Numer. Anal., 43, 6, 2647-2667 (2006), (electronic) · Zbl 1111.65100
[30] Kostrykin, V.; Makarov, K. A.; Motovilov, A. K., Perturbation of spectra and spectral subspaces, Trans. Amer. Math. Soc., 359, 1, 77-89 (2007) · Zbl 1115.47014
[31] Kraus, M.; Langer, M.; Tretter, C., Variational principles and eigenvalue estimates for unbounded block operator matrices and applications, J. Comput. Appl. Math., 171, 1-2, 311-334 (2004) · Zbl 1066.49030
[32] Kuchment, P., Floquet Theory for Partial Differential Equations, Operator Theory: Advances and Applications, vol. 60 (1993), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0789.35002
[33] Kuttler, J. R.; Sigillito, V. G., Eigenvalues of the Laplacian in two dimensions, SIAM Rev., 26, 2, 163-193 (1984) · Zbl 0574.65116
[34] Langer, H., Über eine Klasse polynomialer Scharen selbstadjungierter Operatoren im Hilbertraum, J. Funct. Anal., 12, 13-29 (1973) · Zbl 0255.47046
[35] Langer, H., Über eine Klasse polynomialer Scharen selbstadjungierter Operatoren im Hilbertraum. II, J. Funct. Anal., 16, 221-234 (1974) · Zbl 0283.47020
[36] Langer, H.; Langer, M.; Tretter, C., Variational principles for eigenvalues of block operator matrices, Indiana Univ. Math. J., 51, 6, 1427-1459 (2002) · Zbl 1048.47011
[37] Lehoucq, R. B.; Sorensen, D. C.; Yang, C., ARPACK Users’ GuideSolution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, Software, Environments, and Tools, vol. 6 (1998), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA · Zbl 0901.65021
[38] Markus, A. S., Introduction to the Spectral Theory of Polynomial Operator Pencils, Translations of Mathematical Monographs, vol. 71 (1988), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0678.47005
[39] Mennicken, R.; Shkalikov, A. A., Spectral decomposition of symmetric operator matrices, Math. Nachr., 179, 259-273 (1996) · Zbl 0874.47009
[40] Osborn, J. E., Spectral approximation for compact operators, Math. Comp., 29, 712-725 (1975) · Zbl 0315.35068
[41] Raman, A.; Fan, Sh., Perturbation theory for plasmonic modulation and sensing, Phys. Rev. B, 83, Article 205131 pp. (2011)
[42] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. IV. Analysis of Operators (1978), Academic Press [Harcourt Brace Jovanovich Publishers]: Academic Press [Harcourt Brace Jovanovich Publishers] New York · Zbl 0401.47001
[43] Schmalkoke, P., On the spectral properties of dispersive photonic crystals (2013), Karlsuhe, Doctoral thesis
[44] Schmidt, K.; Kauf, P., Computation of the band structure of two-dimensional photonic crystals with hp finite elements, Comput. Methods Appl. Mech. Engrg., 198, 1249-1259 (2009) · Zbl 1157.78355
[45] Sigalas, M. M.; Soukoulis, C. M.; Chan, C. T.; Ho, K. M., Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials, Phys. Rev. B, 49, 11080-11087 (1994)
[46] Tretter, C., Spectral Theory of Block Operator Matrices and Applications (2008), Imperial College Press: Imperial College Press London · Zbl 1173.47003
[47] Tretter, C., Spectral inclusion for unbounded block operator matrices, J. Funct. Anal., 256, 11, 3806-3829 (2009) · Zbl 1179.47005
[48] Warburton, T.; Embree, M., The role of the penalty in the local discontinuous Galerkin method for Maxwell’s eigenvalue problem, Comput. Methods Appl. Mech. Engrg., 195, 25-28, 3205-3223 (2006) · Zbl 1131.78011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.