×

Second derivative general linear methods with inherent Runge-Kutta stability. (English) Zbl 1351.65051

Summary: In this paper, we find some relationships among the coefficients matrices of second derivative general linear methods (SGLMs) which are sufficient conditions, but not necessary, to ensure the methods have Runge-Kutta stability (RKS) property. Considering these conditions, we construct some \(A\)- and \(L\)-stable SGLMs with inherent RKS of orders up to five. Also, some numerical experiments for the constructed methods in variable stepsize environment are given.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
65L04 Numerical methods for stiff equations
65L50 Mesh generation, refinement, and adaptive methods for ordinary differential equations
Full Text: DOI

References:

[1] Abdi, A., Bras, M., Hojjati, G.: On the construction of second derivative diagonally implicit multistage integration methods. Appl. Numer. Math. 76, 1-18 (2014) · Zbl 1288.65104 · doi:10.1016/j.apnum.2013.08.006
[2] Abdi, A., Hojjati, G.: An extension of general linear methods. Numer. Algor. 57, 149-167 (2011) · Zbl 1228.65111 · doi:10.1007/s11075-010-9420-y
[3] Abdi, A., Hojjati, G.: Maximal order of second derivative general linear methods with Runge-kutta stability. Appl. Numer. Math. 61, 1046-1058 (2011) · Zbl 1227.65063 · doi:10.1016/j.apnum.2011.06.004
[4] Abdi, A., Hojjati, G.: Implementation of Nordsieck second derivative methods for stiff ODEs. Appl. Numer. Math. 94, 241-253 (2015) · Zbl 1325.65098 · doi:10.1016/j.apnum.2015.04.002
[5] Butcher, J.C.: On the convergence of numerical solutions to ordinary differential equations. Math. Comp. 20, 1-10 (1966) · Zbl 0141.13504 · doi:10.1090/S0025-5718-1966-0189251-X
[6] Butcher, J.C.: General linear methods for stiff differential equations. BIT 41, 240-264 (2001) · Zbl 0983.65085 · doi:10.1023/A:1021986222073
[7] Butcher, J.C.: Numerical methods for ordinary differential equations. Wiley, New York (2008) · Zbl 1167.65041 · doi:10.1002/9780470753767
[8] Butcher, J.C., Hojjati, G.: Second derivative methods with RK stability. Numer. Algor. 40, 415-429 (2005) · Zbl 1084.65069 · doi:10.1007/s11075-005-0413-1
[9] Butcher, J.C., Jackiewicz, Z.: Construction of general linear methods with Runge-Kutta stability properties. Numer. Algor. 36, 53-72 (2004) · Zbl 1055.65083 · doi:10.1023/B:NUMA.0000027738.54515.50
[10] Butcher, J.C., Wright, W.M.: A transformation relating explicit and diagonally-implicit general linear methods. Appl. Numer. Math. 44, 313-327 (2003) · Zbl 1016.65048 · doi:10.1016/S0168-9274(02)00149-6
[11] Butcher, J.C., Wright, W.M.: The construction of practical general linear methods. BIT 43, 695-721 (2003) · Zbl 1046.65054 · doi:10.1023/B:BITN.0000009952.71388.23
[12] Cash, J.R.: Second derivative extended backward differentiation formulas for the numerical integration of stiff systems. SIAM J. Numer. Anal. 18, 21-36 (1981) · Zbl 0452.65047 · doi:10.1137/0718003
[13] Chakravarti, P.C., Kamel, M.S.: Stiffly stable second derivative multistep methods with higher order and improved stability regions. BIT 23, 75-83 (1983) · Zbl 0507.65034 · doi:10.1007/BF01937327
[14] Chan, R.P.K., Tsai, A.Y.J.: On explicit two-derivative Runge-Kutta methods. Numer. Algor. 53, 171-194 (2010) · Zbl 1185.65122 · doi:10.1007/s11075-009-9349-1
[15] Dahlquist, G.: A special stability problem for linear multistep methods. BIT 3, 27-43 (1963) · Zbl 0123.11703 · doi:10.1007/BF01963532
[16] Enright, W.H.: Second derivative multistep methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 11, 321-331 (1974) · Zbl 0249.65055 · doi:10.1137/0711029
[17] Hairer, E., Norsett, S.P., Wanner, G.: Solving ordinary differential equations I: nonstiff problems. Springer, Berlin (2000) · Zbl 0789.65048
[18] Hojjati, G., Rahimi Ardabili, M.Y., Hosseini, S.M.: New second derivative multistep methods for stiff systems. Appl. Math. Model. 30, 466-476 (2006) · Zbl 1101.65078 · doi:10.1016/j.apm.2005.06.007
[19] Huang, S.J.Y.: Implementation of general linear methods for stiff ordinary differential equations. PhD thesis, Department of Mathematics Auckland University (2005) · Zbl 1055.65083
[20] Jackiewicz, Z.: General linear methods for ordinary differential equations. Wiley, New Jersey (2009) · Zbl 1211.65095 · doi:10.1002/9780470522165
[21] Lee, J.H.J.: Numerical methods for ordinary differential equations: a survey of some standard methods. MSc thesis, Department of Mathematics Auckland University (2004) · Zbl 0123.11703
[22] Schäfer, E.: A new approach to explain the High Irradiance Responses of photomorphogenesis on the basis of phytochrome. J. Math. Biology. 2, 41-56 (1975) · Zbl 0317.92011 · doi:10.1007/BF00276015
[23] Wright, W.M.: Explicit general linear methods with inherent Runge-Kutta Stability. Numer. Algor. 31, 381-399 (2002) · Zbl 1016.65049 · doi:10.1023/A:1021195804379
[24] Wright, W.M.: General linear methods with inherent Runge-Kutta stability. Phd thesis, University of Auckland (2003) · Zbl 1016.65049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.