×

Multifractal regime detecting method for financial time series. (English) Zbl 1351.62182

Summary: We focus on time varying multifractality in time series and introduce a multifractal regime detecting method (MRDM) adopting a nonparametric statistical test for multifractality based on generalized Hurst exponent (GHE). MRDM is a practical method to discriminate multifractal regimes in a time series of any length using a moving time window approach with the adjustable time window size and the moving interval. MRDM is applied to simulations consisting of both multifractal and monofractal regimes, and the results confirm its validity. Using MRDM, we identify multifractal regimes in the time series of Korea composite stock price index (KOSPI) from 1990 through 2012 and observe the distinct stylized facts of the KOSPI return values in multifractal regimes such as the heavy tail distribution, high kurtosis, and the long memory in volatility. Surrogate tests based on improved amplitude adjusted Fourier transformation (IAAFT) algorithm, normal distribution, and generalized Student \(t\) distribution are performed for the validation of MDRM, and the probable causes of multifractality in the KOSPI series are discussed.

MSC:

62P05 Applications of statistics to actuarial sciences and financial mathematics
62M02 Markov processes: hypothesis testing
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
91G80 Financial applications of other theories
28A80 Fractals
Full Text: DOI

References:

[1] Barabasi, A. L.; Vicsek, T., Multifractality of self-affine fractals, Phys Rev A, 44, 2730-2733 (1991)
[2] Bacry, E.; Delour, J.; Muzy, J. F., Modelling financial time series using multifractal random walks, Phys A Stat Mech Appl, 299, 84-92 (2001) · Zbl 0974.91045
[3] Bacry, E.; Delour, J.; Muzy, J. F., Multifractal random walk, Phys Rev E, 64, 026103 (2001) · Zbl 0974.91045
[4] Barunik, J.; Kristoufek, L., On Hurst exponent estimation under heavy-tailed distributions, Phys A Stat Mech Appl, 389, 3844-3855 (2010)
[5] Barunik, J.; Aste, T.; Di Matteo, T.; Liu, R., Understanding the source of multifractality in financial markets, Phys A Stat Mech Appl, 391, 4234-4251 (2012)
[6] Calvet, L.; Fisher, A., Forecasting multifractal volatility, J Econ, 105, 27-58 (2001) · Zbl 1040.62084
[7] Calvet, L.; Fisher, A., Multifractality in asset returns: theory and evidence, Rev Econ Stat, 84, 381-406 (2002)
[8] Calvet, L.; Fisher, A., How to forecast long-run volatility: regime switching and the estimation of multifractal processes, J Financial Econ, 2, 49-83 (2004)
[9] Calvet, L.; Fisher, A., Multifractal volatility: theory, forecasting, and pricing (2008), Academic Press
[10] Di Matteo, T.; Aste, T.; Dacorogna, M. M., Scaling behaviors in differently developed markets, Phys A Stat Mech Appl, 324, 183-188 (2003) · Zbl 1072.91565
[11] Di Matteo, T., Multi-scaling in finance, Quant Finance, 7, 21-36 (2007) · Zbl 1278.91118
[12] Drożdż, S.; Kwapień, J.; Oświecimka, P.; Rak, R., Quantitative features of multifractal subtleties in time series, Europhys Lett, 88, 60003 (2009)
[13] Górski, A. Z.; Drożdż, S.; Speth, J., Financial multifractality and its subtleties: an example of DAX, Phys A Stat Mech Appl, 316, 496-510 (2002) · Zbl 1001.91090
[14] Hill, Bruce M., A simple general approach to inference about the tail of a distribution, Ann Stat, 3, 1163-1174 (1975) · Zbl 0323.62033
[15] Jiang, Z. Q.; Zhou, W. X., Multifractality in stock indexes: fact or fiction?, Phys A Stat Mech Appl, 387, 3605-3614 (2008)
[16] Kantelhardt, J. W.; Zschiegner, S. A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H. E., Multifractal detrended fluctuation analysis of nonstationary time series, Phys A Stat Mech Appl, 316, 87-114 (2002) · Zbl 1001.62029
[17] Kumar, S.; Deo, N., Multifractal properties of the Indian financial market, Phys A Stat Mech Appl, 388, 1593-1602 (2009)
[18] Kwapień, J.; Oświęcimka, P.; Drożdż, S., Components of multifractality in high-frequency stock returns, Phys A Stat Mech Appl, 350, 466-474 (2005)
[19] Kwapień, J.; Drożdż, S., Physical approach to complex systems, Phys Rep, 515, 115-226 (2012)
[20] Liu, R.; Di Matteo, T.; Lux, T., True and apparent scaling: the proximity of the Markov-switching multifractal model to long-range dependence, Phys A Stat Mech Appl, 383, 35-42 (2007)
[21] Lux, T., The Markov-switching multifractal model of asset returns: GMM estimation and linear forecasting of volatility, J Bus Econ Stat, 26, 194-210 (2008)
[22] L’vov, V. S.; Podivilov, E.; Pomyalov, A.; Procaccia, I.; Vandembroucq, D., Improved shell model of turbulence, Phys Rev E, 58, 1811 (1998)
[23] Mandelbrot, B. B., Fractals: form, chance and dimension (1977), WH Freeman and Company · Zbl 0376.28020
[25] Morales, R.; Di Matteo, T.; Gramatica, R.; Aste, T., Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series, Phys A Stat Mech Appl, 391, 3180-3189 (2012)
[26] Morales, R.; Di Matteo, T.; Aste, T., Non-stationary multifractality in stock returns, Phys A Stat Mech Appl, 392, 6470-6483 (2013)
[27] Muzy, J. F.; Delour, J.; Bacry, E., Modelling fluctuations of financial time series: from cascade process to stochastic volatility model, Eur Phys J B, 17, 537-548 (2000)
[28] Oh, G.; Eom, C.; Havlin, S.; Jung, W.-S.; Wang, F.; Stanley, H. E., A multifractal analysis of Asian foreign exchange markets, Eur Phys J B, 85, 1-6 (2012)
[29] Oświęcimka, P.; Kwapień, J.; Drożdż, S., Multifractality in the stock market: price increments versus waiting times, Phys A Stat Mech Appl, 347, 626-638 (2005)
[30] Oświęcimka, P.; Kwapień, J.; Drożdż, S., Wavelet versus detrended fluctuation analysis of multifractal structures, Phys Rev E, 74, 016103 (2006)
[31] Oświęcimka, P.; Kwapień, J.; Drożdż, S.; Górski, Andrzej Z.; Rak, R., Multifractal model of asset returns versus real stock market dynamics, Acta Phys Pol B, 37, 3083-3092 (2006)
[32] Peng, C. K.; Buldrev, S. V.; Havliln, S.; Simons, M.; Stanley, H. E.; Goldberger, A. L., Mosaic organization of DNA nucleotides, Phys Rev E, 49, 1685-1689 (1994)
[33] Sensoy, A., Generalized Hurst exponent approach to efficiency in MENA markets, Phys A Stat Mech Appl, 392, 5019-5026 (2013)
[34] Sensoy, A., Time-varying long range dependence in market returns of FEAS members, Chaos Solitons Fractals, 53, 39-45 (2013)
[35] Schreiber, T.; Shmitz, A., Improved surrogate data for nonlinearity test, Phys Rev Lett, 77, 635-638 (1996)
[36] Suárez-García, P.; Gómez-Ullate, D., Multifractality and long memory of a financial index, Phys A Stat Mech Appl, 394, 226-234 (2014)
[37] Theiler, J.; Eubank, S.; Longtin, A.; Galdrikian, B.; Farmer, J. D., Testing for nonlinearity in time series: the method of surrogate data, Phys D Nonlinear Phenom, 58, 77-94 (1992) · Zbl 1194.37144
[38] Wendt, H.; Abry, P., Multifractality tests using bootstrapped wavelet leaders, IEEE Trans Signal Process, 55, 4811-4820 (2007) · Zbl 1390.94060
[39] Wendt, H.; Abry, P.; Jaffard, S., Bootstrap for empirical multifractal analysis, IEEE Signal Process Mag, 24, 38-48 (2007)
[40] Zhou, W. X.; Sornette, D.; Yuan, W. K., Inverse statistics and multifractality of exit distances in 3D fully developed turbulence, Phys D Nonlinear Phenom, 214, 55-62 (2006) · Zbl 1138.76369
[41] Zhou, W. X., Finite-size effect and the components of multifractality in financial volatility, Chaos Solitons Fractals, 45, 147-155 (2012) · Zbl 1269.91102
[42] Zunino, L.; Tabak, B. M.; Figliola, A.; Pérez, D. G.; Garavaglia, M.; Rosso, O. A., A multifractal approach for stock market inefficiency, Phys A Stat Mech Appl, 387, 6558-6566 (2008)
[43] Zunino, L.; Figliola, A.; Tabak, B. M.; Pérez, D. G.; Garavaglia, M.; Rosso, O. A., Multifractal structure in Latin-American market indices, Chaos Solitons Fractals, 41, 2331-2340 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.