×

Order estimates for the best approximations and approximations by Fourier sums in the classes of convolutions of periodic functions of low smoothness in the uniform metric. (English. Ukrainian original) Zbl 1350.42002

Ukr. Math. J. 66, No. 12, 1862-1882 (2015); translation from Ukr. Mat. Zh. 66, No. 12, 1658-1675 (2014).
This paper deals with the uniform approximation by Fourier sums and the best uniform approximation (by trigonometric polynomials) of some classes of functions that arise as convolutions with appropriate kernels.
Let \(\psi(k)\) be an arbitrary fixed sequence of real numbers and let \(\beta\) be a fixed real number. Then a function \(f\) in \(L^{1}\) with Fourier series \[ f\sim \frac{a_{0}}{2}+\sum^{\infty}_{k=1} (a_{k}\cos kx+ b_{k}\sin kx) \] is said to belong to the class \(L_{\beta}^{\psi}\) if the series \[ \sum^{\infty}_{k=1}\frac{1}{\psi(k)} \left(a_{k}\cos \left(kx + \frac{\beta\pi}{2}\right)+b_{k}\sin \left(kx+\frac{\beta\pi}{2}\right)\right) \] is the Fourier series of a summable function \(f_{\beta}^{\psi}\). For \(1\leq p\leq\infty\) the class \(C^{\psi}_{\beta,p}\) is formed by the \(2\pi\)-periodic continuous functions \(f\) such that \(f_{\beta}^{\psi}\) exists, \(f^{\psi}_{\beta}\in L^{p}\) and moreover \(\|f_{\beta}^{\psi}\|_{p}\leq 1\), \(f_{\beta}^{\psi}\perp 1\). It is known that functions in the class \(C_{\beta,p}^{\psi}\) are convolutions of functions in the unit ball of \(L^{p}\) with the kernel \[ \psi_{\beta}(t)=\sum^{\infty}_{k=1}\psi(k)\cos \left(kt-\frac{\beta\pi}{2}\right). \]
Assume now that the sequence \(\{\psi(k)\}\) is given by the restriction to the set of natural numbers of a convex continuous function \(\psi(t)\), \(t\geq 1\), with \(\lim\limits_{t\to\infty}\psi(t)=0\) satisfying the additional property that there is a constant \(k>0\) such that \[ 0<\frac{t}{\psi^{-1}(\psi(t)/2)-t}\leq k,\quad t\geq 1. \] The class of such convex functions will be denoted by \(\mathfrak{M}_{0}\). As to the approximation by Fourier series, consider the quantity \[ \mathcal{E}_{n}(C^{\psi}_{\beta,p})_{C}=\sup_{f\in C^{\psi}_{\beta,p}}\|f(\cdot)-S_{n-1}(f;\cdot)\|_{\infty},\quad 1\leq p\leq\infty, \] where \(S_{n-1}(f;\cdot)\) is the partial Fourier sum of \(f\) of order \(n-1\). The following result is then proved.
Theorem 1. Let \(\psi(t)t^{1/p}\in\mathfrak{M}_{0}\) and let \[ \sum^{\infty}_{k=1}\psi^{p'}(k) k^{p'-2}<\infty,\quad 1<p<\infty,\quad \frac{1}{p}+\frac{1}{p'}=1. \] Then, for any \(n\in\mathbb{N}\) and \(\beta\in\mathbb{R}\), the following relations are true: \[ K^{(1)}_{\psi,p}\left(\sum^{\infty}_{k=n}\psi^{p'}(k)k^{p'-2}\right)^{1/p'} \leq \mathcal{E}_{n}(C^{\psi}_{\beta,p})_{C}\leq K^{(2)}_{\psi,p}\left(\sum^{\infty}_{k=n}\psi^{p'}(k)k^{p'-2}\right)^{1/p'}, \] where \(K^{(1)}_{\psi,p}\) and \(K^{(2)}_{\psi,p}\) are positive constants that depend only on \(\psi\) and \(p\).
A similar result can be stated for the best uniform approximation. For this purpose consider now the quantity \[ E_{n}(C^{\psi}_{\beta,p})_{C}=\sup_{f\in C^{\psi}_{\beta,p}}\inf_{t_{n-1}\in\mathcal{T}_{2n-1}} \|f(\cdot)-t_{n-1}(\cdot)\|_{\infty},\quad 1\leq p\leq\infty, \] where \(\mathcal{T}_{2n-1}\) is the space of all trigonometric polynomials of degree not greater than \(n-1\).
To evaluate \(E_{n}(C^{\psi}_{\beta,p})_{C}\) one needs an additional assumption on the function \(\psi\) which is given in terms of the characteristic \[ \alpha(\psi;t)=\frac{\psi(t)}{t|\psi'(t)|} \quad (\psi'(t)=\psi'(t+0). \] Then the following result is proved.
Theorem 2. Let \[ \sum^{\infty}_{k=1}\psi^{p'}(k) k^{p'-2}<\infty \] and let \(\psi(t)=g_{p}(t)t^{-1/p}\), where \(g_{p}\in\mathfrak{M}_{0}\), \(1<p<\infty\), \(\dfrac{1}{p}+\dfrac{1}{p'}=1\) and \[ \inf_{t\geq 1}\alpha (g_{p};t)>\frac{p'}{2}. \] Then, for any \(n\in\mathbb{N}\) and \(\beta\in\mathbb{R}\), the following relations are true: \[ K^{(3)}_{\psi,p}\left(\sum^{\infty}_{k=n}\psi^{p'}(k)k^{p'-2}\right)^{1/p'} \leq E_{n}(C^{\psi}_{\beta,p})_{C}\leq \mathcal{E}_{n}(C^{\psi}_{\beta,p})_{C}\leq K^{(2)}_{\psi,p}\left(\sum^{\infty}_{k=n}\psi^{p'}(k)k^{p'-2}\right)^{1/p'}, \] where \(K^{(2)}_{\psi,p}\) and \(K^{(3)}_{\psi,p}\) are positive constants that depend only on \(\psi\) and \(p\).

MSC:

42A10 Trigonometric approximation
42A20 Convergence and absolute convergence of Fourier and trigonometric series
Full Text: DOI

References:

[1] A. I. Stepanets, Methods of Approximation Theory [in Russian], Vol. 1, Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2002). · Zbl 1129.42002
[2] A. Zygmund, Trigonometric Series [Russian translation], Vol. 2, Mir, Moscow (1965). · JFM 58.0280.01
[3] A. I. Stepanets, Classification and Approximation of Periodic Functions [in Russian], Naukova Dumka, Kiev (1987). · Zbl 0689.42002
[4] A. I. Stepanets, A. S. Serdyuk, and A. L. Shidlich, “Classification of infinitely differentiable functions,” Ukr. Mat. Zh., 60, No. 12, 1686-1708 (2008); English translation:Ukr. Math. J., No. 12, 1982-2005 (2008). · Zbl 1199.26018
[5] V. N. Temlyakov, Approximation of Periodic Functions, Nova Science Publishers, New York (1993). · Zbl 0899.41001
[6] A. Kolmogoroff, “Zur Grössennordnung des Restgliedes Fourierschen Reihen differenzierbarer Funktionen,” Ann. Math., 36, No. 2, 521-526 (1935). · Zbl 0011.34503 · doi:10.2307/1968585
[7] V. T. Pinkevich, “On the order of the remainder for the Fourier series of Weyl differentiable functions,” Izv. Akad. Nauk SSSR, Ser. Mat., 4, No. 6, 521-528 (1940). · JFM 66.0281.01
[8] S. M. Nikol’skii, “Approximation of periodic functions by trigonometric polynomials in the mean,” Izv. Akad. Nauk SSSR, Ser. Mat.,10, No. 3, 207-256 (1946). · Zbl 0061.13603
[9] J. Favard, “Sur l’approximation des fonctions périodiques par des polynomes trigonométriques,” C. R. Acad. Sci., 203, 1122-1124 (1936). · JFM 62.0301.02
[10] V. K. Dzyadyk, “On the best approximation in a class of periodic functions with bounded <Emphasis Type=”Italic“>sth derivative (0 <Emphasis Type=”Italic“>< s < 1),” Izv. Akad. Nauk SSSR, Ser. Mat., 17, 135-162 (1953). · Zbl 0050.07102
[11] V. K. Dzyadyk, “On the best approximation on the classes of periodic functions defined by integrals of linear combinations of absolutely monotone kernels,” Mat. Zametki, 16, No. 5, 691-701 (1974). · Zbl 0308.42001
[12] S. B. Stechkin, “On the best approximation of some classes of periodic functions by trigonometric polynomials,” Izv. Akad. Nauk SSSR, Ser. Mat., 20, 643-648 (1956). · Zbl 0071.28304
[13] Sun Young-Sheng, “On the best approximation of periodic differentiable functions by trigonometric polynomials,” Izv. Akad. Nauk SSSR, Ser. Mat., 23, No. 1, 67-92 (1959). · Zbl 0085.28101
[14] A. S. Serdyuk and I. V. Sokolenko, “Uniform approximations of the classes of (ψ<Emphasis Type=”Italic“>, <InlineEquation ID=”IEq2“> <EquationSource Format=”MATHML“> <math xmlns:xlink=”http://www.w3.org/1999/xlink“> <mover accent=”true“> β <mo stretchy=”true“>¯ <EquationSource Format=”TEX“>\[ \overline{\beta} )\]-differentiable functions by linear methods,” in: Approximation Theory of Functions and Related Problems [in Ukrainian], Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv, 8, No. 1 (2011), pp. 181-189. · Zbl 1249.41071
[15] U. Z. Hrabova and A. S. Serdyuk. “Order estimates for the best approximations and approximations by Fourier sums of the classes of (<Emphasis Type=”Italic“>ψ, β)-differential functions,” Ukr. Mat. Zh., 65, No. 9, 1186-1197 (2013); English translation:Ukr. Math. J., 65, No. 9, 1319-1331 (2013). · Zbl 1327.42003
[16] V. S. Romanyuk, “Additions to the estimates of approximation of the classes of infinitely differentiable functions by Fourier sums,” in: Extremal Problems of the Theory of Functions and Related Problems [in Ukrainian], Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv, 46 (2003), pp. 131-135. · Zbl 1129.42309
[17] A. S. Serdyuk and T. A. Stepanyuk, “Order estimates for the best approximations and approximations of classes of infinitely differentiable functions by Fourier sums,” in: Approximation Theory of Functions and Related Problems [in Ukrainian], Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv, 10, No. 1 (2013), pp. 255-282. · Zbl 1313.42019
[18] A. S. Serdyuk and T. A. Stepanyuk, “Estimates for the best approximations of the classes of infinitely differentiable functions in uniform and integral metrics,” Ukr. Mat. Zh., 66, No. 9, 1244-1256 (2014). · Zbl 1351.42004
[19] I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Fizmatgiz, Moscow (1962).
[20] A. Zygmund, Trigonometric Series [Russian translation], Vol. 1, Mir, Moscow (1965). · JFM 58.0280.01
[21] N. P. Korneichuk, Exact Constants in Approximation Theory [in Russian], Nauka, Moscow (1987). · Zbl 0643.41002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.