×

Exponential dichotomy and bounded solutions of differential equations in the Fréchet space. (English. Russian original) Zbl 1350.34046

Ukr. Math. J. 66, No. 12, 1781-1792 (2015); translation from Ukr. Mat. Zh. 66, No. 12, 1587-1597 (2014).
Summary: We establish necessary and sufficient conditions for the existence of bounded solutions of linear differential equations in the Fréchet space. The solutions are constructed by means of a strong generalized inverse operator.

MSC:

34G10 Linear differential equations in abstract spaces
34D09 Dichotomy, trichotomy of solutions to ordinary differential equations
34C11 Growth and boundedness of solutions to ordinary differential equations
Full Text: DOI

References:

[1] O. Perron, “Die Stabilitatzrage bei Differentialgleichungen,” Math. Z., 32, 138-152 (1930).
[2] A. D. Maizel’, “On the stability of solutions of systems of differential equations,” Tr. Ural. Politekhn. Inst., Ser. Mat., 51, 20-50 (1954).
[3] W. A. Coppel, “Dichotomies and reducibility. II,” J. Different. Equat., 4, 386-398 (1968). · Zbl 0203.39806 · doi:10.1016/0022-0396(68)90025-9
[4] R. J. Sacker and G. R. Sell, “Existence of dichotomies and invariant splittings for linear differential systems. II,” J. Different. Equat., 22, 478-496 (1976). · Zbl 0339.58013 · doi:10.1016/0022-0396(76)90042-5
[5] R. J. Sacker, “Existence of dichotomies and invariant splittings for linear differential systems. IV,” J. Different. Equat., 27, 106-137 (1978). · Zbl 0359.34044 · doi:10.1016/0022-0396(78)90115-8
[6] R. Sacker, “The splitting index for linear differential systems,” J. Different. Equat., 33, 368-405 (1979). · Zbl 0438.34008 · doi:10.1016/0022-0396(79)90072-X
[7] Yu. A. Mitropol’skii, A. M. Samoilenko, and V. L. Kulik, Investigation of the Dichotomy of Linear Systems of Differential Equations with the Help of Lyapunov Functions [in Russian], Naukova Dumka, Kiev (1990). · Zbl 0776.34041
[8] A. M. Samoilenko, Elements of the Mathematical Theory of Multifrequency Oscillations. Invariant Tori [in Russian], Moscow, Nauka (1987). · Zbl 0359.34044
[9] A. M. Samoilenko, “On the exponential dichotomy on R of linear differential equations in R<Emphasis Type=”Italic“>n,” Ukr. Mat. Zh., 53, No. 3, 356-371 (2001); English translation: Ukr. Math. J., 53, No. 3, 407-426 (2001). · Zbl 0998.34043
[10] M. G. Krein, Lectures on the Theory of Stability of Solutions of Differential Equations in a Banach Space [in Russian], Institute of Mathematics, Academy of Sciences of Ukr. SSSR, Kiev (1964).
[11] Yu. M. Daletskii and M. G. Krein, Stability of Solutions of Differential Equations in a Banach Space [in Russian], Nauka, Moscow (1970). · Zbl 0233.34001
[12] J. L. Massera and J. J. Schaffer, Linear Differential Equations and Function Spaces, Academic Press, New York (1966). · Zbl 0243.34107
[13] P. Hartman, Ordinary Differential Equations, Wiley, New York (1964). · Zbl 0125.32102
[14] I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kiev (2002). · Zbl 1100.37047
[15] K. J. Palmer, “Exponential dichotomies and transversal homoclinic points,” J. Different. Equat., 55, 225-256 (1984). · Zbl 0508.58035 · doi:10.1016/0022-0396(84)90082-2
[16] K. J. Palmer, “Exponential dichotomies and Fredholm operators,” Proc. Amer. Math. Soc., 104, 149-156 (1988). · Zbl 0675.34006 · doi:10.1090/S0002-9939-1988-0958058-1
[17] A. A. Boichuk, “Solutions of weakly nonlinear differential equations bounded on the whole line,” Nonlin. Oscillations, 2, No. 1, 3-10 (1999). · Zbl 1035.34021
[18] A. A. Boichuk, “Dichotomy, trichotomy, and solutions of nonlinear systems bounded on R,” in: Proceedings of the XXVI Summer School “Applications of Mathematics in Engineering’26” (Sozopol, Bulgaria, June13-20, 2000), Heron Press, Sofia, 26 (2001), pp. 9-15.
[19] A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, VSP, Utrecht (2004). · Zbl 1083.47003 · doi:10.1515/9783110944679
[20] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, Berlin (1981). · Zbl 0456.35001
[21] H. M. Rodrigues and J. G. Ruas-Filho, “Evolution equations: dichotomies and the Fredholm alternative for bounded solutions,” J. Different. Equat., 119, 263-283 (1995). · Zbl 0837.34065 · doi:10.1006/jdeq.1995.1091
[22] A. G. Baskakov, “On the invertibility and Fredholm property of parabolic differential operators,” Dokl. Ros. Akad. Nauk, 383, No. 5, 583-585 (2002).
[23] A. G. Baskakov, “Spectral analysis of differential operators with unbounded operator coefficients, difference relations, and semigroups of difference ratios,” Izv. Ros. Akad. Nauk, Ser. Mat., 73, No. 2, 3-68 (2009). · Zbl 1167.47006 · doi:10.4213/im2643
[24] Yu. Latushkin and Yu. Tomilov, “Fredholm differential operators with unbounded coefficients,” J. Different. Equat., 208, 388-429 (2005). · Zbl 1061.47039
[25] A. A. Boichuk and O. O. Pokutnyi, “Bounded solutions of differential equations with unbounded operator in Fréchet space,” in: Abstr. of the International Mathematical Conference of the 75th Birthday of Academician A. M. Samoilenko “Bogolyubov Readings DIF-2013. Differential Equations, Theory of Functions, and Their Applications,” Kyiv (2013), pp. 32-33.
[26] A. A. Boichuk and A. A. Pokutnyi, “Bounded solutions of linear differential equations in a Banach space,” Nelin. Kolyvannya, 9, No. 1, 3-14 (2006); English translation: Nonlin. Oscillations, 9, No. 1, 1-12 (2006). · Zbl 1164.34025
[27] S. G. Krein, Linear Equations in Banach Spaces [in Russian], Nauka, Moscow (1971). · Zbl 0233.47001
[28] S. G. Krein, Linear Differential Equations in Banach Spaces [in Russian], Nauka, Moscow (1967).
[29] A. A. Pokutnyi, “Bounded solutions of linear and weakly nonlinear differential equations with unbounded operator in the linear part in Banach spaces,” Differents. Uravn., 48, No. 6, 803-813 (2012). · Zbl 1275.34084
[30] S. G. Krein and Yu. B. Savchenko, “On the exponential dichotomy for partial differential equations,” Differents. Uravn., 8, No. 5, 835-844 (1972). · Zbl 0251.35003
[31] O. O. Pokutnyi, “Generalized bounded solutions of linear evolutionary equations in locally convex spaces,” Zh. Obchysl. Prykl. Mat., 98, No. 2, 35-40 (2009).
[32] B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations [in Russian], Moscow University, Moscow (1978). · Zbl 0414.43008
[33] O. O. Pokutnyi, “Generalized inverse operators in the Fréchet, Banach, and Hilbert spaces,” Visn. Kyiv. Nats. Univ., Ser. Fiz.-Mat. Nauk., No. 4, 158-161 (2013). · Zbl 1313.47006
[34] E. Deutch, “Semi-inverses, reflexive semi-inverses, and pseudoinverses of an arbitrary linear transformation,” Linear Algebra Appl., 4, 313-322 (1971). · Zbl 0254.15004 · doi:10.1016/0024-3795(71)90002-4
[35] A. P. Robertson and W. J. Robertson, Topological Vector Spaces, Cambridge Univ. Press, London (1964). · Zbl 0123.30202
[36] Ya. V. Radyno, Linear Equations and Bornology [in Russian], Belorusskii Gos. Univ., Minsk (1982). · Zbl 0534.46004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.