×

The TOKAM3X code for edge turbulence fluid simulations of tokamak plasmas in versatile magnetic geometries. (English) Zbl 1349.82154

Summary: The new code TOKAM3X simulates plasma turbulence in full torus geometry including the open field lines of the Scrape-off Layer (SOL) and the edge closed field lines region in the vicinity of the separatrix. Based on drift-reduced Braginskii equations, TOKAM3X is able to simulate both limited and diverted plasmas. Turbulence is flux driven by incoming particles from the core plasma and no scale separation between the equilibrium and the fluctuations is assumed so that interactions between large scale flows and turbulence are consistently treated. Based on a domain decomposition, specific numerical schemes are proposed using conservative finite-differences associated to a semi-implicit time advancement. The process computation is multi-threaded and based on MPI and OpenMP libraries. In this paper, fluid model equations are presented together with the proposed numerical methods. The code is verified using the manufactured solution technique and validated through documented simple experiments. Finally, first simulations of edge plasma turbulence in X-point geometry are also introduced in a JET geometry.

MSC:

82D10 Statistical mechanics of plasmas
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
Full Text: DOI

References:

[1] Bucalossi, J., Fusion Eng. Des., 89, 907-912 (2014)
[2] ITER Physics Basis, Nucl. Fusion, 39, 2137-2638 (1999)
[4] Stangeby, P. C., The Plasma Boundary of Magnetic Fusion Devices (2000), IOP
[5] Chapter 4: power and particle control, Nuclear Fusion, 39, 2391-2469 (1999)
[6] Loarte, A.; Lipschultz, B.; Kukushkin, A. S.; Matthews, G. F.; Stangeby, P. C., Chapter 4: power and particle control, Nucl. Fusion, 47, S203-S263 (2007)
[7] Rognlien, T. D., Understanding of edge plasmas in magnetic fusion energy devices, Plasma Phys. Control. Fusion, 47, Article A283 pp. (2005)
[8] Braginskii, S. I., Transport processes in a plasma, (Leontovich, M. A., Reviews in Plasma Physics, vol. 1 (1965), Consultants Bureau: Consultants Bureau New York), 205-311
[9] Simakov, A. N.; Catto, P. J., Drift-ordered equations for modelling collisional edge plasma, Contrib. Plasma Phys., 44, 1-3, 83-94 (2004)
[10] Bufferand, H.; Bensiali, B.; Bucalossi, J.; Ciraolo, G.; Genesio, P.; Ghendrih, Ph.; Marandet, Y.; Paredes, A.; Schwander, F.; Serre, E.; Tamain, P., Near wall plasma simulation using penalization technique with the transport code SOLEDG2D-EIRENE, J. Nucl. Mater., 438, S445-S448 (2013)
[11] Schneider, R.; Bonin, X.; Borrass, K.; Coster, D. P.; Kastelewicz, H.; Reiter, D.; Rozhansky, V. A.; Braams, B. J., Plasma edge physics with B2-EIRENE, Contrib. Plasma Phys., 46, 3, 191 (2006)
[12] Sarazin, Y.; Ghendrih, Ph., Intermittent particle transport in two-dimensional edge turbulence, Phys. Plasmas, 5, 4214 (1998)
[13] Garcia, O. E.; Naulin, V.; Nielsen, A. H.; Juul Rasmussen, J., Turbulence and intermittent transport at the boundary of magnetized plasmas, Phys. Plasmas, 12, 6, Article 062309 pp. (2005)
[14] Myra, J. R.; Russell, D. A.; D’Ippolito, D. A., Collisionality and magnetic geometry effects on tokamak edge turbulent transport. I. A two region model with application to blobs, Phys. Plasmas, 13, 11, 112502 (2006)
[15] Dudson, B. D.; Umansky, M. V.; Xub, X. Q.; Snyder, P. B.; Wilson, H. R., BOUT++: a framework for parallel plasma fluid simulations, Comput. Phys. Commun., 180, 9, 1467-1480 (2009) · Zbl 07872388
[16] Ricci, P.; Halpern, F. D.; Jolliet, S.; Loizu, J.; Mosetto, A.; Fasoli, A.; Furno, I.; Theiler, C., Simulation of plasma turbulence in scrape-off layer conditions: the GBS code, simulation results and code validation, Plasma Phys. Control. Fusion, 54, 124047 (2012)
[17] Naulin, V.; Windisch, T.; Grulke, O., Simulation of plasma turbulence in scrape-off layer conditions, Phys. Plasmas, 15, Article 012307 pp. (2008)
[18] Tamain, P.; Ghendrih, Ph.; Tsitrone, E.; Grandgirard, V.; Garbet, X.; Sarazin, Y.; Serre, E.; Ciraolo, G.; Chiavassa, G., TOKAM-3D: a 3D fluid code for transport and turbulence in the edge plasma of Tokamaks, J. Comput. Phys., 229, 361-378 (2010) · Zbl 1355.76082
[19] Wagner, F., A quarter-century of H-mode studies, Plasma Phys. Control. Fusion, 49, B1-B33 (2007)
[20] Fuhr, G.; Beyer, P.; Benkadda, S.; Garbet, X., Evidence from numerical simulations of transport-barrier relaxations in tokamak edge plasmas in the presence of electromagnetic fluctuations, Phys. Rev. Lett., 101, Article 195001 pp. (2008)
[21] Theiler, C.; Furno, I.; Ricci, P.; Labbit, B.; Muller, S. H.; Plyushchev, G., Cross-field motion of plasma blobs in an open magnetic field line configuration, Phys. Rev. Lett., 103, Article 065001 pp. (2009)
[22] Dif-Pradalier, G.; Gunn, J.; Ciraolo, G.; Chang, C. S.; Chiavassa, G.; Diamond, P.; Fedorczak, N.; Ghendrih, Ph.; Isoardi, L.; Kocan, M.; Kud, S.; Serre, E.; Tamain, P., The Mistral base case to validate kinetic and fluid turbulence transport codes of the edge and SOL plasmas, J. Nucl. Mater., 415, S597-S600 (2011)
[23] Wesson, J., Tokamaks, International Series of Monographs on Physics, vol. 149 (2011), Oxford University Press · Zbl 1111.82054
[25] Ghendrih, Ph.; Cartier-Michaud, T.; Dif-Pradalier, G.; Esteve, D.; Garbet, X.; Grangirard, V.; Latu, G.; Norscini, C.; Sarazin, Y., Collisions in magnetized plasmas, ESAIM Proc., 49, 81-112 (2015) · Zbl 1342.82133
[26] Bodi, K.; Ciraolo, G.; Ghendrih, P.; Schwander, F.; Serre, E.; Tamain, P., (38th EPS Conference on Plasma Physics. 38th EPS Conference on Plasma Physics, Strasbourg, France (2011)), P1.121
[27] Angus, J. R.; Umansky, M. V., Modeling of large amplitude plasma blobs in three-dimensions, Phys. Plasmas, 21, Article 012514 pp. (2014)
[28] Rognlien, T. D.; Xu, X. Q.; Hindmarsh, A. C., Application of parallel implicit methods to edge-plasma numerical simulation, J. Comput. Phys., 175, 249-268 (2002) · Zbl 1168.76353
[29] Liuand, X. D.; Osher, S.; Chan, T., Weighted essentially nonoscillatory schemes, J. Comput. Phys., 150, 200-212 (1994) · Zbl 0811.65076
[30] Donat, R.; Marquina, A., Capturing shock reflections: an improved flux formula, J. Comput. Phys., 125, 42-58 (1996) · Zbl 0847.76049
[32] Salari, K.; Knupp, P., Code verification by the method of manufactured solution (2000), Sandia report SAND2000-1444
[33] Gunn, J.; Boucher, C.; Dionne, M.; Duran, I.; Fuchs, V.; Loarer, T.; Nanobashvili, I.; Pánek, R.; Pascal, J.-Y.; Saint-Laurent, F.; Stöckel, J.; Rompuy, T. V.; Zagórski, R.; Adámek, J.; Bucalossi, J.; Dejarnac, R.; Devynck, P.; Hertout, P.; Hron, M.; Lebrun, G.; Moreau, P.; Rimini, F.; Sarkissian, A.; Oost, G. V., Evidence for a poloidally localized enhancement of radial transport in the scrape-off layer of the Tore Supra tokamak, J. Nucl. Mater., 363-365 (2007)
[34] Krasheninnikov, S. I.; D’ippolito, D. A.; Myra, J. R., Recent theoretical progress in understanding coherent structures in edge and SOL turbulence, J. Plasma Phys., 74, 05, 679-717 (2008)
[35] Riva, F.; Colin, C.; Denis, J.; Easy, L.; Furno, I.; Madsen, J.; Militello, F.; Naulin, V.; Nielsen, A. H.; Olsen, J. M.B.; Omotani, J. T.; Rasmussen, J. J.; Ricci, P.; Serre, E.; Tamain, P.; Theiler, C., Blob dynamics in the TORPEX experiment: a multi-code validation, Plasma Phys. Control. Fusion, 58, Article 044005 pp. (2016)
[36] Gribov, Y.; Humphreys, D.; Kajiwara, K.; Lazarus, E. A.; Lister, J. B.; Ozeki, T.; Portone, A.; Shimada, M.; Sips, A. C.C.; Wesley, J. C., Plasma operation and control, Nucl. Fusion, 47, 6, 385-403 (2007)
[37] Ghendrih, Ph.; Bodi, K.; Bufferand, H.; Chiavassa, G.; Ciraolo, G.; Fedorczak, N.; Isoardi, L.; Paredes, A.; Sarazin, Y.; Serre, E.; Schwander, F.; Tamain, P., Transition to supersonic flows in the edge plasma, Plasma Phys. Control. Fusion, 53, 5, Article 054019 pp. (2011)
[38] Tamain, P.; Bufferand, H.; Ciraolo, G.; Colin, C.; Ghendrih, Ph.; Schwander, F.; Serre, E., 3D properties of edge turbulent transport in full-torus simulations and their impact on poloidal asymmetries, Contrib. Plasma Phys., 54, 4-6, 555-559 (2014)
[39] Harrison, J.; Fishpool, G.; Dudson, B., Filamentary transport in the private flux region in MAST, J. Nucl. Mater., 463, 757-760 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.