×

Finite-difference schemes for anisotropic diffusion. (English) Zbl 1349.82136

Summary: In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 1012 times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at \(x\)-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.

MSC:

82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
82D10 Statistical mechanics of plasmas

Software:

SEL/HiFi

References:

[1] Aavatsmark, I., Multipoint flux approximation methods for quadrilateral grids, (9th International Forum on Reservoir Simulation (2007))
[2] Aavatsmark, I.; Barkve, T.; Bøe, Ø.; Mannseth, T., Discretization on non-orthogonal, curvilinear grids for multi-phase flow, (Proc. of the 4th European Conf. on the Mathematics of Oil Recovery, Røros, vol. 6 (1994)) · Zbl 0925.76320
[3] Aavatsmark, I.; Barkve, T.; Bøe, Ø.; Mannseth, T., Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media, J. Comput. Phys., 127, 2-14 (1996) · Zbl 0859.76048
[4] Aavatsmark, I.; Barkve, T.; Bøe, Ø.; Mannseth, T., Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods, SIAM J. Sci. Comput., 19, 5, 1700-1716 (1998) · Zbl 0951.65080
[5] Aavatsmark, I.; Barkve, T.; Bøe, Ø.; Mannseth, T., Discretization on unstructured grids for inhomogeneous, anisotropic media. Part II: Discussion and numerical results, SIAM J. Sci. Comput., 19, 5, 1717-1736 (1998) · Zbl 0951.65082
[6] Agélas, L.; Di Pietro, A.; Droniou, J., The G method for heterogeneous anisotropic diffusion on general meshes, Math. Model. Numer. Anal., 4, 44, 597-625 (2010) · Zbl 1202.65143
[7] Aricò, C.; Tucciarelli, T., Monotonic solution of heterogeneous anisotropic diffusion problems, J. Comput. Phys., 252, 219-249 (2013) · Zbl 1349.76800
[8] Babuška, I.; Suri, M., On locking and robustness in the finite element method, SIAM J. Numer. Anal., 220, 751-771 (1992)
[9] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 2, 267-279 (1997) · Zbl 0871.76040
[10] Bonelle, J.; Ern, A., Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes, ESAIM: Math. Model. Numer. Anal., 48, 2, 553-581 (2014) · Zbl 1297.65132
[11] Breil, J.; Maire, P.-H., A cell-centered diffusion scheme on two-dimensional unstructured meshes, J. Comput. Phys., 224, 785-823 (2007) · Zbl 1120.65327
[12] Brezzi, F.; Lipnikov, K.; Shashkov, M., Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal., 43, 5, 1872-1896 (2005) · Zbl 1108.65102
[13] Brezzi, F.; Lipnikov, K.; Simoncini, V., A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci., 15, 1533-1551 (2005) · Zbl 1083.65099
[14] Cockburn, B.; Shu, C.-W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 2440-2463 (1998) · Zbl 0927.65118
[16] Degond, P.; Deluzet, F.; Negulescu, C., An asymptotic preserving scheme for strongly anisotropic elliptic problems, Multiscale Model. Simul., 8, 2, 645-666 (2009) · Zbl 1190.35216
[17] Degond, P.; Lozinski, A.; Narski, J.; Negulescu, C., An asymptotic-preserving method for highly anisotropic elliptic equations based on a micro-macro decomposition, J. Comput. Phys., 231, 7, 2724-2740 (2012) · Zbl 1332.65165
[18] del Castillo-Negrete, D.; Chacón, L., Local and nonlocal parallel heat transport in general magnetic fields, Phys. Rev. Lett., 106, 19 (2011)
[19] del Castillo-Negrete, D.; Chacón, L., Parallel heat transport in integrable and chaotic magnetic fields, Phys. Plasmas, 19, 5 (2012), 1-5
[21] Douglas, J.; Dupont, T., Interior penalty procedures for elliptic and parabolic Galerkin methods, (Computing Methods in Applied Sciences. Computing Methods in Applied Sciences, Lecture Notes in Phys., vol. 58 (1976)), 207-216
[22] Droniou, J., Finite volume schemes for diffusion equations: introduction to and review of modern methods (2013), HAL report hal-00813613
[23] Droniou, J.; Eymard, R., A mixed finite volume scheme for anisotropic diffusion problems on any grid, Numer. Math., 105, 1, 35-71 (2006) · Zbl 1109.65099
[24] Droniou, J.; Eymard, R.; Gallouët, T.; Herbin, R., A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods, Math. Models Methods Appl. Sci., 20, 2, 265-295 (2008) · Zbl 1191.65142
[25] Edwards, M. G.; Rogers, C. F., Finite volume discretization with imposed flux continuity for the general tensor pressure equation, Comput. Geosci., 2, 259-290 (1998) · Zbl 0945.76049
[26] Eymard, R.; Gallouët, T.; Herbin, R., A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension, IMA J. Numer. Anal., 26, 326-353 (2006) · Zbl 1093.65110
[27] Eymard, R.; Gallouët, T.; Herbin, R., Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes, SUSHI: a scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal., 30, 4, 1009-1043 (2010) · Zbl 1202.65144
[28] Eymard, R.; Henry, G.; Herbin, R.; Hubert, F.; Klöfkorn, R.; Manzini, G., 3D benchmark on discretization schemes for anisotropic diffusion problems on general grids, (Finite Volumes for Complex Applications VI, Problems and Perspectives. Finite Volumes for Complex Applications VI, Problems and Perspectives, Springer Proceeding in Mathematics, vol. 4 (2011)), 895-930, ISTE · Zbl 1246.76053
[29] Gassner, G.; Lörcher, F.; Munz, C.-D., A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes, J. Comput. Phys., 224, 2, 1049-1063 (2007) · Zbl 1123.76040
[30] Günter, S.; Lackner, K.; Tichmann, C., Finite element and higher order difference formulations for modelling heat transport in magnetised plasmas, J. Comput. Phys., 226, 2306-2316 (2007) · Zbl 1388.76453
[31] Günter, S.; Yu, Q.; Krüger, J.; Lackner, K., Modelling of heat transport in magnetised plasmas using non-aligned coordinates, J. Comput. Phys., 209, 354-370 (2005) · Zbl 1329.76405
[32] Herbin, R.; Hubert, F., Benchmark on discretization schemes for anisotropic diffusion problems on general grids, (Finite Volumes for Complex Applications V (2008)), 659-692, ISTE · Zbl 1422.65314
[33] Hermeline, F., A finite volume method for the approximation of diffusion operators on distorted meshes, J. Comput. Phys., 160, 481-499 (2000) · Zbl 0949.65101
[34] Hermeline, F., A finite volume method for approximating 3d diffusion operators on general meshes, J. Comput. Phys., 228, 5763-5786 (2009) · Zbl 1168.76340
[35] Hirani, A. N., Discrete exterior calculus (2003), California Institute of Technology, PhD thesis
[37] Hölzl, M., Diffusive heat transport across magnetic islands and stochastic layers in tokamaks (2010), Technische Universität München, Max-Planck-Institut für Plasmaphysik, PhD thesis
[38] Hyman, J.; Morel, J.; Shashkov, M.; Steinberg, S., Mimetic finite difference methods for diffusion equations, Comput. Geosci., 6, 333-352 (2002) · Zbl 1023.76033
[39] Hyman, J.; Shashkov, M.; Steinberg, S., The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials, J. Comput. Phys., 132, 130-148 (1997) · Zbl 0881.65093
[40] Jacq, P.; Maire, P. H.; Abgrall, R., A high-order cell-centered finite volume scheme for simulating three dimensional anisotropic diffusion equations on unstructured grids (2013), HAL report hal-00835537
[41] Klausen, R. A.; Russell, T. F., Relationships among some locally conservative discretization methods which handle discontinuous coefficients, Comput. Geosci., 8, 341-377 (2004) · Zbl 1124.76030
[43] Le Potier, C., A finite volume method for the approximation of highly anisotropic diffusion operators on unstructured meshes, (Finite Volumes for Complex Applications IV (2005)) · Zbl 1422.65210
[44] Le Potier, C., Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles nonstructurés, C. R. Math., 341, 12, 787-792 (2005) · Zbl 1081.65086
[45] Le Potier, C.; Ong, T. H., A cell-centered scheme for heterogeneous anisotropic diffusion problems on general meshes, Int. J. Finite Vol., 8, 1-40 (2012) · Zbl 1490.65243
[46] Li, X.; Huang, W., An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems, J. Comput. Phys., 229, 8072-8094 (2010) · Zbl 1198.65227
[47] Lipnikov, K.; Manzini, G.; Svyatskiy, D., Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems, J. Comput. Phys., 230, 2620-2642 (2011) · Zbl 1218.65117
[48] Lipnikov, K.; Shashkov, M., Local flux mimetic finite difference methods, Numer. Math., 112, 115-152 (2009) · Zbl 1165.65063
[49] Lipnikov, K.; Shashkov, M.; Svyatskiy, D.; Vassilevski, Y., Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes, J. Comput. Phys., 227, 492-512 (2007) · Zbl 1130.65113
[50] Lipnikov, K.; Shashkov, M.; Yotov, I., Local flux mimetic finite difference methods (2005), Los Alamos National Laboratory, Technical Report LA-UR-05-8364 · Zbl 1096.76030
[51] Lipnikov, K.; Svyatskiy, D.; Vassilevski, Y., Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes, J. Comput. Phys., 228, 703-716 (2009) · Zbl 1158.65083
[52] Maire, P.-H.; Breil, J., A high-order finite volume cell-centered scheme for anisotropic diffusion on two-dimensional unstructured grids, J. Comput. Phys., 224, 2, 785-823 (2011) · Zbl 1120.65327
[53] Maire, P.-H.; Breil, J., A nominally second-order accurate finite volume cell-centered scheme for anisotropic diffusion on two-dimensional unstructured grids, J. Comput. Phys., 231, 2259-2299 (2012) · Zbl 1242.65178
[54] Meier, E. T.; Lukin, V. S.; Shumlak, U., Spectral element spatial discretization error in solving highly anisotropic heat conduction equation, Comput. Phys. Commun., 181, 837-841 (2010) · Zbl 1205.65251
[55] Mentrelli, A.; Negulescu, C., Asymptotic preserving scheme for highly anisotropic, nonlinear diffusion equations, J. Comput. Phys., 231, 24, 8229-8245 (2012)
[56] Morel, J. E.; Roberts, R. M.; Shashkov, M., A local support-operators diffusion discretization scheme for quadrilateral \(r - z\) meshes, J. Comput. Phys., 144, 17-51 (1998) · Zbl 1395.76052
[58] Oden, J. T.; Babuška, I.; Baumann, C. E., A discontinuous hp finite element method for diffusion problems, J. Comput. Phys., 146, 2, 491-519 (1998) · Zbl 0926.65109
[59] Ong, T. H., Schémas volumes finis pour des opérateurs de diffusion anisotropes hétérogènes sur des maillages non-conformes (2012), Université Paris-Est, PhD thesis
[60] Pasdunkorale, A. J.; Turner, I. W., A second order control-volume finite element least-squares strategy for simulating diffusion in strongly anisotropic media, J. Comput. Math., 23, 1, 1-16 (2005) · Zbl 1309.74074
[61] Peraire, J.; Persson, P.-O., The compact discontinuous Galerkin (CDG) method for elliptic problems, SIAM J. Sci. Comput., 30, 4, 1806-1824 (2008) · Zbl 1167.65436
[63] Sharma, P.; Hammett, G. W., Preserving monotonicity in anisotropic diffusion, J. Comput. Phys., 227, 123-142 (2007) · Zbl 1280.76027
[64] Shashkov, M.; Steinberg, S., Support-operator finite-difference algorithms for general elliptic problems, J. Comput. Phys., 118, 131-151 (1995) · Zbl 0824.65101
[65] Sovinec, C. R.; Glasser, A. H.; Gianakon, T. A.; Barnes, D. C.; Nebel, R. A.; Kruger, S. E.; Schnack, D. D.; Plimpton, S. J.; Tarditi, A.; Chu, M. S., Nonlinear magnetohydrodynamics simulation using high-order finite elements, J. Comput. Phys., 195, 355-386 (2004) · Zbl 1087.76070
[66] Umansky, M. V.; Day, M. S.; Rognlien, T. D., On numerical solution of strongly anisotropic diffusion equation on misaligned grids, Numer. Heat Transf., Part B, Fundam., 47, 533-554 (2005)
[67] Van Leer, B.; Lo, M.; Van Raalte, M., A discontinuous Galerkin method for diffusion based on recovery (2007), AIAA-paper 4083
[68] Van Leer, B.; Nomura, S., Discontinuous Galerkin for diffusion (2005), AIAA-paper 5108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.