×

Nonlinear Fourier analysis for discontinuous conductivities: computational results. (English) Zbl 1349.78047

Summary: Two reconstruction methods of Electrical Impedance Tomography (EIT) are numerically compared for nonsmooth conductivities in the plane based on the use of complex geometrical optics (CGO) solutions to D-bar equations involving the global uniqueness proofs for Calderón problem exposed in [A. I. Nachman, Ann. Math. (2) 143, No. 1, 71–96 (1996; Zbl 0857.35135); the first two author, Ann. Math. (2) 163, No. 1, 265–299 (2006; Zbl 1111.35004)]: the Astala-Päivärinta theory-based low-pass transport matrix method implemented in [the first author et al., Inverse Probl. Imaging 5, No. 3, 531–549 (2011; Zbl 1237.78014)] and the shortcut method which considers ingredients of both theories. The latter method is formally similar to the Nachman theory-based regularized EIT reconstruction algorithm studied in [K. Knudsen et al., Inverse Probl. Imaging 3, No. 4, 599–624 (2009; Zbl 1184.35314)] and several references from there. New numerical results are presented using parallel computation with size parameters larger than ever, leading mainly to two conclusions as follows. First, both methods can approximate piecewise constant conductivities better and better as the cutoff frequency increases, and there seems to be a Gibbs-like phenomenon producing ringing artifacts. Second, the transport matrix method loses accuracy away from a (freely chosen) pivot point located outside of the object to be studied, whereas the shortcut method produces reconstructions with more uniform quality.

MSC:

78A48 Composite media; random media in optics and electromagnetic theory
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
92C55 Biomedical imaging and signal processing

References:

[1] Alessandrini, G., Stable determination of conductivity by boundary measurements, Appl. Anal., 27, 153-172 (1988) · Zbl 0616.35082
[2] Astala, K.; Iwaniec, T.; Martin, G., Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Mathematical Series, vol. 48 (2009), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1182.30001
[3] Astala, K.; Mueller, J.; Päivärinta, L.; Perämäki, A.; Siltanen, S., Direct electrical impedance tomography for nonsmooth conductivities, Inverse Probl. Imaging, 5, 531-549 (2011) · Zbl 1237.78014
[4] Astala, K.; Mueller, J.; Päivärinta, L.; Siltanen, S., Numerical computation of complex geometrical optics solutions to the conductivity equation, Appl. Comput. Harmon. Anal., 29, 391-403 (2010)
[5] Astala, K.; Päivärinta, L., A boundary integral equation for Calderón’s inverse conductivity problem, (Proc. 7th Internat. Conference on Harmonic Analysis. Proc. 7th Internat. Conference on Harmonic Analysis, Collectanea Mathematica (2006)) · Zbl 1104.35068
[6] Astala, K.; Päivärinta, L., Calderón’s inverse conductivity problem in the plane, Ann. Math., 163, 265-299 (2006) · Zbl 1111.35004
[7] Brown, R. M.; Uhlmann, G., Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions, Commun. Partial Differ. Equ., 22, 1009-1027 (1997) · Zbl 0884.35167
[8] Brühl, M., Explicit characterization of inclusions in electrical impedance tomography, SIAM J. Math. Anal., 32, 1327-1341 (2001) · Zbl 0980.35170
[9] Brühl, M.; Hanke, M., Numerical implementation of two non-iterative methods for locating inclusions by impedance tomography, Inverse Probl., 16, 1029-1042 (2000) · Zbl 0955.35076
[10] Calderón, A.-P., On an inverse boundary value problem, (Seminar on Numerical Analysis and its Applications to Continuum Physics. Seminar on Numerical Analysis and its Applications to Continuum Physics, Rio de Janeiro, 1980 (1980), Soc. Brasil. Mat.: Soc. Brasil. Mat. Rio de Janeiro), 65-73
[11] Caro, P.; García, A.; Reyes, J. M., Stability of the Calderón problem for less regular conductivities, J. Differ. Equ., 254, 469-492 (2013) · Zbl 1273.35311
[12] Cheney, M.; Isaacson, D.; Newell, J. C., Electrical impedance tomography, SIAM Rev., 41, 85-101 (1999) · Zbl 0927.35130
[13] Clop, A.; Faraco, D.; Ruiz, A., Stability of Calderón’s inverse conductivity problem in the plane for discontinuous conductivities, Inverse Probl. Imaging, 4, 49-91 (2010) · Zbl 1202.35346
[14] Croke, R.; Mueller, J. L.; Music, M.; Perry, P.; Siltanen, S.; Stahel, A., The Novikov-Veselov equation: theory and computation (2013), preprint · Zbl 1330.35375
[15] Faraco, D.; Rogers, K., The Sobolev norm of characteristic functions with applications to the Calderón inverse problem, Q. J. Math., 64, 133-147 (2013) · Zbl 1309.35185
[16] Friedman, A., Detection of mines by electric measurements, SIAM J. Appl. Math., 47, 201-212 (1987) · Zbl 0636.35084
[17] Gebauer, B.; Hyvönen, N., Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem, Inverse Probl. Imaging, 2, 355-372 (2008) · Zbl 1180.35558
[18] Haberman, B.; Tataru, D., Uniqueness in Calderón’s problem with Lipschitz conductivities, Duke Math. J., 162, 497-516 (2013) · Zbl 1260.35251
[20] Hamilton, S.; Lassas, M.; Siltanen, S., A direct reconstruction method for anisotropic electrical impedance tomography, Inverse Probl., 30, 7, 075007 (2014) · Zbl 1298.65175
[21] Hanke, M.; Schappel, B., The factorization method for electrical impedance tomography in the half-space, SIAM J. Appl. Math., 68, 907-924 (2008) · Zbl 1151.65085
[22] Harrach, B.; Seo, J. K., Detecting inclusions in electrical impedance tomography without reference measurements, SIAM J. Appl. Math., 69, 1662-1681 (2009) · Zbl 1180.35561
[23] Harrach, B.; Ullrich, M., Monotonicity-based shape reconstruction in electrical impedance tomography, SIAM J. Math. Anal., 45, 3382-3403 (2013) · Zbl 1282.35413
[24] Huhtanen, M.; Perämäki, A., Numerical solution of the R-linear Beltrami equation, Math. Comput., 81, 387-397 (2012) · Zbl 1255.65219
[25] Hyvönen, N., Application of the factorization method to the characterization of weak inclusions in electrical impedance tomography, Adv. Appl. Math., 39, 197-221 (2007) · Zbl 1118.35069
[26] Ide, T.; Isozaki, H.; Nakata, S.; Siltanen, S., Local detection of three-dimensional inclusions in electrical impedance tomography, Inverse Probl., 26, 035001 (2010) · Zbl 1184.92026
[27] Ide, T.; Isozaki, H.; Nakata, S.; Siltanen, S.; Uhlmann, G., Probing for electrical inclusions with complex spherical waves, Commun. Pure Appl. Math., 60, 1415-1442 (2007) · Zbl 1142.35104
[28] Ikehata, M.; Siltanen, S., Numerical method for finding the convex hull of an inclusion in conductivity from boundary measurements, Inverse Probl., 16, 1043-1052 (2000) · Zbl 0956.35133
[29] Ikehata, M.; Siltanen, S., Electrical impedance tomography and Mittag-Leffler’s function, Inverse Probl., 20, 1325-1348 (2004) · Zbl 1074.35087
[30] Isaacson, D.; Mueller, J.; Newell, J.; Siltanen, S., Imaging cardiac activity by the D-bar method for electrical impedance tomography, Physiol. Meas., 27, S43-S50 (2006)
[31] Isaacson, D.; Mueller, J. L.; Newell, J. C.; Siltanen, S., Reconstructions of chest phantoms by the D-bar method for electrical impedance tomography, IEEE Trans. Med. Imaging, 23, 821-828 (2004)
[32] Knudsen, K., A new direct method for reconstructing isotropic conductivities in the plane, Physiol. Meas., 24, 391-403 (2003)
[33] Knudsen, K.; Lassas, M.; Mueller, J.; Siltanen, S., D-bar method for electrical impedance tomography with discontinuous conductivities, SIAM J. Appl. Math., 67, 893 (2007) · Zbl 1123.35091
[34] Knudsen, K.; Lassas, M.; Mueller, J.; Siltanen, S., Regularized D-bar method for the inverse conductivity problem, Inverse Probl. Imaging, 3, 599-624 (2009) · Zbl 1184.35314
[35] Knudsen, K.; Mueller, J.; Siltanen, S., Numerical solution method for the dbar-equation in the plane, J. Comput. Phys., 198, 500-517 (2004) · Zbl 1059.65116
[36] Knudsen, K.; Tamasan, A., Reconstruction of less regular conductivities in the plane, Commun. Partial Differ. Equ., 29, 361-381 (2004) · Zbl 1063.35149
[37] Lassas, M.; Mueller, J. L.; Siltanen, S.; Stahel, A., The Novikov-Veselov equation and the inverse scattering method: II. Computation, Nonlinearity, 25, 1799-1818 (2012) · Zbl 1247.65116
[38] Lassas, M.; Mueller, J. L.; Siltanen, S.; Stahel, A., The Novikov-Veselov equation and the inverse scattering method, Part I: Analysis, Physica D, 241, 1322-1335 (2012) · Zbl 1248.35187
[39] Lechleiter, A.; Hyvönen, N.; Hakula, H., The factorization method applied to the complete electrode model of impedance tomography, SIAM J. Appl. Math., 68, 1097-1121 (2008) · Zbl 1146.35096
[40] Mueller, J.; Siltanen, S., Direct reconstructions of conductivities from boundary measurements, SIAM J. Sci. Comput., 24, 1232-1266 (2003) · Zbl 1031.78008
[41] Mueller, J.; Siltanen, S., Linear and Nonlinear Inverse Problems with Practical Applications (2012), SIAM · Zbl 1262.65124
[42] Music, M.; Perry, P.; Siltanen, S., Exceptional circles of radial potentials, Inverse Probl., 29 (2013) · Zbl 1276.78001
[43] Nachman, A. I., Global uniqueness for a two-dimensional inverse boundary value problem, Ann. Math., 143, 71-96 (1996) · Zbl 0857.35135
[44] Perry, P. A., Miura maps and inverse scattering for the Novikov-Veselov equation (2012), e-prints
[45] Siltanen, S.; Mueller, J.; Isaacson, D., An implementation of the reconstruction algorithm of A. Nachman for the 2-D inverse conductivity problem, Inverse Probl., 16, 681-699 (2000) · Zbl 0962.35193
[46] Uhlmann, G.; Wang, J.-N., Reconstructing discontinuities using complex geometrical optics solutions, SIAM J. Appl. Math., 68, 1026-1044 (2008) · Zbl 1146.35097
[47] Vainikko, G., Fast solvers of the Lippmann-Schwinger equation, (Direct and Inverse Problems of Mathematical Physics. Direct and Inverse Problems of Mathematical Physics, Newark, DE, 1997. Direct and Inverse Problems of Mathematical Physics. Direct and Inverse Problems of Mathematical Physics, Newark, DE, 1997, Int. Soc. Anal. Appl. Comput., vol. 5 (2000), Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht), 423-440 · Zbl 0962.65097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.