×

Stabilization of numerical interchange in spectral-element magnetohydrodynamics. (English) Zbl 1349.76907

Summary: Auxiliary numerical projections of the divergence of flow velocity and vorticity parallel to magnetic field are developed and tested for the purpose of suppressing unphysical interchange instability in magnetohydrodynamic simulations. The numerical instability arises with equal-order \(C^0\) finite- and spectral-element expansions of the flow velocity, magnetic field, and pressure and is sensitive to behavior at the limit of resolution. The auxiliary projections are motivated by physical field-line bending, and coercive responses to the projections are added to the flow-velocity equation. Their incomplete expansions are limited to the highest-order orthogonal polynomial in at least one coordinate of the spectral elements. Cylindrical eigenmode computations show that the projections induce convergence from the stable side with first-order ideal-MHD equations during \(h\)-refinement and \(p\)-refinement. Hyperbolic and parabolic projections and responses are compared, together with different methods for avoiding magnetic divergence error. The projections are also shown to be effective in linear and nonlinear time-dependent computations with the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, No. 1, 355–386 (2004; Zbl 1087.76070)], provided that the projections introduce numerical dissipation.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1087.76070

Software:

LAPACK; NIMROD
Full Text: DOI

References:

[1] Suydam, B. R., Stability of a linear pinch, (Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, vol. 31. Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, vol. 31, United Nations, Geneva (1958)), 157-159
[2] Mercier, C., A necessary condition for the hydromagnetic stability of plasma with axial symmetry, Nucl. Fusion, 1, 47-53 (1960)
[3] Gruber, R.; Rappaz, J., Finite Element Methods in Linear Ideal Magnetohydrodynamics, 79-117 (1985), Springer: Springer Berlin · Zbl 0573.76001
[4] Degtyarev, L. M.; Medvedev, S. Yu., Methods for numerical simulation of ideal MHD stability of axisymmetric plasmas, Comput. Phys. Commun., 43, 29 (1986) · Zbl 0664.76151
[5] Bondeson, A.; Fu, G. Y., Tunable integration scheme for the finite element method, Comput. Phys. Commun., 66, 167-176 (1991) · Zbl 1031.76554
[6] Lütjens, H.; Luciani, J. F., A class of basis functions for non-ideal magnetohydrodynamic computation, Comput. Phys. Commun., 95, 47-57 (1996) · Zbl 0923.76207
[7] Fischer, P. F.; Mullen, J. S., Filter-based stabilization of spectral element methods, C. R. Acad. Sci. Paris, 332, 265-270 (2001) · Zbl 0990.76064
[8] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 32, 199-259 (1982) · Zbl 0497.76041
[9] Franca, L. P.; Hauke, G.; Masud, A., Revisiting stabilized finite element methods for the advection-diffusion equation, Comput. Methods Appl. Mech. Eng., 195, 1560-1572 (2006) · Zbl 1122.76054
[10] Shadid, J. N.; Pawlowski, R. P.; Banks, J. W.; Chacón, L.; Lin, P. T.; Tuminaro, R. S., Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods, J. Comput. Phys., 229, 7649-7671 (2010) · Zbl 1425.76312
[11] Canuto, C., Stabilization of spectral methods by finite element bubble functions, Comput. Methods Appl. Mech. Eng., 116, 13-26 (1994) · Zbl 0826.76056
[12] Freidberg, J. P., Ideal magnetohydrodynamic theory of magnetic fusion systems, Rev. Mod. Phys., 54, 801-902 (1982)
[13] Appert, K.; Berger, D.; Gruber, R.; Rappaz, J., A new finite element approach to the normal mode analysis in magnetohydrodynamics, J. Comput. Phys., 18, 284-299 (1975) · Zbl 0319.76038
[14] Berger, D.; Gruber, R.; Troyon, F., A finite element approach to the computation of the MHD spectrum of straight noncircular plasma equilibria, Comput. Phys. Commun., 11, 313-323 (1976)
[15] Patera, A. T., A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys., 54, 468-488 (1984) · Zbl 0535.76035
[16] Deville, M. O.; Fischer, P. F.; Mund, E. H., High-order Methods for Incompressible Fluid Flow, 62-67 (2002), Cambridge Press: Cambridge Press Cambridge, 238-245 · Zbl 1007.76001
[17] Sovinec, C. R.; Glasser, A. H.; Gianakon, T. A.; Barnes, D. C.; Nebel, R. A.; Kruger, S. E.; Schnack, D. D.; Plimpton, S. J.; Tarditi, A.; Chu, M. S., Nonlinear magnetohydrodynamics simulation using high-order finite elements, J. Comput. Phys., 195, 355-386 (2004) · Zbl 1087.76070
[18] Chandraseker, S., Hydrodynamic and Hydromagnetic Stability, 577-598 (1981), Dover: Dover Mineola, New York
[19] Munz, C.-D.; Omnes, P.; Schneider, R.; Sonnendrücker, E.; Voß, U., Divergence correction technique for Maxwell solvers based on a hyperbolic model, J. Comput. Phys., 161, 484-511 (2000) · Zbl 0970.78010
[20] Hughes, T. J.R.; Liu, W. K.; Brooks, A., Finite element analysis of incompressible viscous flows by the penalty function formulation, J. Comput. Phys., 30, 1-60 (1979), and references therein · Zbl 0412.76023
[21] Boyd, J. P., Chebyshev and Fourier Spectral Methods, 82-86 (2001), Dover: Dover Mineola, New York, 385-389 · Zbl 0994.65128
[22] Boyd, J. P., Two comments on filtering (artificial viscosity) for Chebyshev and Legendre spectral and spectral element methods: preserving boundary conditions and interpretation of the filter as a diffusion, J. Comput. Phys., 143, 283-288 (1998) · Zbl 0920.65046
[23] Boland, J. M.; Nicolaides, R. A., Stability of finite elements under divergence constraints, SIAM J. Numer. Anal., 20, 722-731 (1983) · Zbl 0521.76027
[24] Bernardi, C.; Mayday, Y., A collocation method over staggered grids for the Stokes problem, Int. J. Numer. Methods Fluids, 8, 537-557 (1988) · Zbl 0665.76037
[25] Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.; McKenney, A.; Sorensen, D., LAPACK Users’ Guide (1999), Society for Industrial Applied Mathematics: Society for Industrial Applied Mathematics Philadelphia · Zbl 0934.65030
[26] Sovinec, C. R.; King, J. R., Analysis of a mixed semi-implicit/implicit algorithm for low-frequency two-fluid plasma modeling, J. Comput. Phys., 229, 5803-5819 (2010) · Zbl 1346.82036
[27] Burke, B. J.; Kruger, S. E.; Hegna, C. C.; Zhu, P.; Snyder, P. B.; Sovinec, C. R.; Howell, E. C., Edge localized linear ideal magnetohydrodynamic instability studies in an extended-magnetohydrodynamics code, Phys. Plasmas, 17, Article 032103 pp. (2010)
[28] Coppi, B.; Greene, J. M.; Johnson, J. L., Resistive instabilities in a diffuse linear pinch, Nucl. Fusion, 6, 101 (1966)
[29] Ferraro, N. M.; Jardin, S. C., Calculations of two-fluid magnetohydrodynamic axisymmetric steady states, J. Comput. Phys., 228, 7742-7770 (2009) · Zbl 1391.76324
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.