×

A fictitious domain approach for the simulation of dense suspensions. (English) Zbl 1349.76860

Summary: Low Reynolds number concentrated suspensions do exhibit an intricate physics which can be partly unraveled by the use of numerical simulation. To this end, a Lagrange multiplier-free fictitious domain approach is described in this work. Unlike some methods recently proposed, the present approach is fully Eulerian and therefore does not need any transfer between the Eulerian background grid and some Lagrangian nodes attached to particles. Lubrication forces between particles play an important role in the suspension rheology and have been properly accounted for in the model. A robust and effective lubrication scheme is outlined which consists in transposing the classical approach used in Stokesian Dynamics to our present direct numerical simulation. This lubrication model has also been adapted to account for solid boundaries such as walls. Contact forces between particles are modeled using a classical Discrete Element Method (DEM), a widely used method in granular matter physics.comprehensive validations are presented on various one-particle, two-particle or three-particle configurations in a linear shear flow as well as some \(O(10^3)\) and \(O(10^4)\) particle simulations.

MSC:

76T20 Suspensions
65M85 Fictitious domain methods for initial value and initial-boundary value problems involving PDEs
76T25 Granular flows
76D08 Lubrication theory

Software:

Proteus; FreeFem++

References:

[1] Coussot, P.; Ancey, C., Rheophysical classification of concentrated suspensions and granular pastes, Phys. Rev. E, 59, 4445 (1999)
[2] Stickel, J.; Powell, R., Fluid mechanics and rheology of dense suspensions, Annu. Rev. Fluid Mech., 37, 129-149 (2005) · Zbl 1117.76066
[3] Morris, J., A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow, Rheol. Acta, 48, 909-923 (2009)
[4] Bossis, G.; Brady, J., Dynamic simulation of sheared suspensions. I. General method, J. Chem. Phys., 80, 5141 (1984)
[5] Brady, J.; Bossis, G., The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation, J. Fluid Mech., 155, 105-129 (1985)
[6] Durlofsky, L.; Brady, J.; Bossis, G., Dynamic simulation of hydrodynamically interacting particles, J. Fluid Mech., 180, 21-49 (1987) · Zbl 0622.76040
[7] Sierou, A.; Brady, J., Accelerated Stokesian dynamics simulations, J. Fluid Mech., 448, 115-146 (2001) · Zbl 1045.76034
[8] Maxey, M.; Patel, B., Localized force representations for particles sedimenting in stokes flow, Int. J. Multiph. Flow, 27, 1603-1626 (2001) · Zbl 1137.76676
[9] Climent, E.; Maxey, M., Numerical simulations of random suspensions at finite Reynolds numbers, Int. J. Multiph. Flow, 29, 579-601 (2003) · Zbl 1136.76487
[10] Yeo, K.; Maxey, M., Simulation of concentrated suspensions using the force-coupling method, J. Comput. Phys., 229, 2401-2421 (2010) · Zbl 1303.76012
[11] Hu, H.; Joseph, D.; Crochet, M., Direct simulation of fluid particle motions, Theor. Comput. Fluid Dyn., 3, 285-306 (1992) · Zbl 0754.76054
[12] Feng, J.; Hu, H.; Joseph, D., Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 1. Sedimentation, J. Fluid Mech., 261, 95-134 (1994) · Zbl 0800.76114
[13] Johnson, A. A.; Tezduyar, T. E., 3d simulation of fluid-particle interactions with the number of particles reaching 100, Comput. Methods Appl. Mech. Eng., 145, 301-321 (1997) · Zbl 0893.76043
[14] Uhlmann, M., An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys., 209, 448-476 (2005) · Zbl 1138.76398
[15] Kim, D.; Choi, H., Immersed boundary method for flow around an arbitrarily moving body, J. Comput. Phys., 212, 662-680 (2006) · Zbl 1161.76520
[16] Feng, Z.; Michaelides, E., Proteus: A direct forcing method in the simulations of particulate flows, J. Comput. Phys., 202, 20-51 (2005) · Zbl 1076.76568
[17] Glowinski, R.; Pan, T.; Hesla, T.; Joseph, D., A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiph. Flow, 25, 755-794 (1999) · Zbl 1137.76592
[18] Glowinski, R.; Pan, T.; Hesla, T.; Joseph, D.; Periaux, J., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow, J. Comput. Phys., 169, 363-426 (2001) · Zbl 1047.76097
[19] Patankar, N.; Singh, P.; Joseph, D.; Glowinski, R.; Pan, T., A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiph. Flow, 26, 1509-1524 (2000) · Zbl 1137.76712
[20] Ladd, A., Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech., 271, 285-309 (1994) · Zbl 0815.76085
[21] Ladd, A., Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results, J. Fluid Mech., 271, 311-339 (1994) · Zbl 0815.76085
[22] Ladd, A.; Verberg, R., Lattice-Boltzmann simulations of particle-fluid suspensions, J. Stat. Phys., 104, 1191-1251 (2001) · Zbl 1046.76037
[23] Sharma, N.; Patankar, N., A fast computation technique for the direct numerical simulation of rigid particulate flows, J. Comput. Phys., 205, 439-457 (2005) · Zbl 1087.76533
[24] Apte, S.; Martin, M.; Patankar, N., A numerical method for fully resolved simulation (FRS) of rigid particle-flow interactions in complex flows, J. Comput. Phys., 228, 2712-2738 (2009) · Zbl 1282.76148
[25] Yu, Z.; Shao, X., A direct-forcing fictitious domain method for particulate flows, J. Comput. Phys., 227, 292-314 (2007) · Zbl 1280.76052
[26] Veeramani, C.; Minev, P.; Nandakumar, K., A fictitious domain formulation for flows with rigid particles: A non-Lagrange multiplier version, J. Comput. Phys., 224, 867-879 (2007) · Zbl 1123.76069
[27] Blasco, J.; Calzada, M.; Marín, M., A Fictitious Domain, parallel numerical method for rigid particulate flows, J. Comput. Phys., 228, 7596-7613 (2009) · Zbl 1173.76037
[28] Patankar, N.; Hu, H., Rheology of a suspension of particles in viscoelastic fluids, J. Non-Newton. Fluid Mech., 96, 427-443 (2001) · Zbl 1010.76088
[29] Hwang, W.; Hulsen, M., Toward the computational rheometry of filled polymeric fluids, Korea-Aust. Rheol. J., 18, 171-181 (2006)
[30] Yu, Z.; Phan-Thien, N.; Fan, Y.; Tanner, R., Viscoelastic mobility problem of a system of particles, J. Non-Newton. Fluid Mech., 104, 87-124 (2002) · Zbl 1058.76592
[31] Hwang, W.; Hulsen, M.; Meijer, H., Direct simulations of particle suspensions in a viscoelastic fluid in sliding bi-periodic frames, J. Non-Newton. Fluid Mech., 121, 15-33 (2004) · Zbl 1143.76591
[32] Yu, Z.; Shao, X.; Wachs, A., A fictitious domain method for particulate flows with heat transfer, J. Comput. Phys., 217, 424-452 (2006) · Zbl 1160.76382
[33] Wachs, A., A DEM-DLM/FD method for direct numerical simulation of particulate flows: Sedimentation of polygonal isometric particles in a Newtonian fluid with collisions, Comput. Fluids, 38, 1608-1628 (2009) · Zbl 1242.76142
[34] Beaume, G., Modélisation et simulation numérique directe de lʼécoulement dʼun fluide complexe (2008), Ecole Nationale Supérieure des Mines de Paris, (in French), Ph.D. thesis
[35] Glowinski, R.; Pan, T.; Periaux, J., Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies, Comput. Methods Appl. Mech. Eng., 151, 181-194 (1998) · Zbl 0916.76052
[36] Patankar, N., A formulation for fast computations of rigid particulate flows, (Center for Turbulence Research Annual Research Briefs (2001)), 185-196
[37] Lefebvre, A.; Maury, B., Apparent viscosity of a mixture of a Newtonian fluid and interacting particles, C. R., Méc., 333, 923-933 (2005) · Zbl 1173.76302
[38] Peskin, C., The immersed boundary method, Acta Numer., 11, 479-517 (2002) · Zbl 1123.74309
[39] Yu, Z.; Wachs, A.; Peysson, Y., Numerical simulation of particle sedimentation in shear-thinning fluids with a fictitious domain method, J. Non-Newton. Fluid Mech., 136, 126-139 (2006) · Zbl 1195.76412
[40] Kim, S.; Karrila, S., Microhydrodynamics: Principles and Selected Applications, vol. 507 (1991), Butterworth-Heinemann: Butterworth-Heinemann Boston
[41] Martys, N., Study of a dissipative particle dynamics based approach for modeling suspensions, J. Rheol., 49, 401 (2005)
[42] Nguyen, N.; Ladd, A., Lubrication corrections for lattice-Boltzmann simulations of particle suspensions, Phys. Rev. E, 66, 046708 (2002)
[43] Nasseri, S.; Phan-Thien, N.; Fan, X., Lubrication approximation in completed double layer boundary element method, Comput. Mech., 26, 388-397 (2000) · Zbl 0994.76061
[44] Brady, J.; Bossis, G., Stokesian dynamics, Annu. Rev. Fluid Mech., 20, 111-157 (1988)
[45] Dance, S.; Maxey, M., Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow, J. Comput. Phys., 189, 212-238 (2003) · Zbl 1097.76600
[46] Wagner, G. J.; Ghosal, S.; Liu, W. K., Particulate flow simulations using lubrication theory solution enrichment, Int. J. Numer. Methods Eng., 56, 1261-1289 (2003) · Zbl 1032.76037
[47] Huang, N.; Ovarlez, G.; Bertrand, F.; Rodts, S.; Coussot, P.; Bonn, D., Flow of wet granular materials, Phys. Rev. Lett., 94, 28301 (2005)
[48] Radjaï, F.; Dubois, F., Discrete Element Modeling of Granular Materials (2011), John Wiley & Sons, Inc.
[49] Pöschel, T.; Schwager, T., Computational Granular Dynamics: Models and Algorithms (2005), Springer
[50] Mansouri, M.; Delenne, J.; El Youssoufi, M.; Seridi, A., A 3D DEM-LBM approach for the assessment of the quick condition for sands, C. R., Méc., 337, 675-681 (2009)
[51] Chorin, A., Numerical solution of the Navier-Stokes equations, Math. Comput., 22, 745-762 (1968) · Zbl 0198.50103
[52] Temam, R., Une méthode dʼapproximation de la solution des équations de Navier-Stokes, Bull. Soc. Math. Fr., 98, 115-152 (1968) · Zbl 0181.18903
[53] Hirt, C.; Nichols, B., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201-225 (1981) · Zbl 0462.76020
[54] Osher, S.; Sethian, J., Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12-49 (1988) · Zbl 0659.65132
[55] Osher, S.; Fedkiw, R., Level set methods: An overview and some recent results, J. Comput. Phys., 169, 463-502 (2001) · Zbl 0988.65093
[56] Lakehal, D.; Meier, M.; Fulgosi, M., Interface tracking towards the direct simulation of heat and mass transfer in multiphase flows, Int. J. Heat Fluid Flow, 23, 242-257 (2002)
[57] Liu, X.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200-212 (1994) · Zbl 0811.65076
[58] Huang, C., Semi-Lagrangian advection schemes and Eulerian WKL algorithms, Mon. Weather Rev., 122, 1647-1658 (1994)
[59] Staniforth, A.; Côté, J., Semi-lagrangian integration schemes for atmospheric models: A review, Mon. Weather Rev., 119, 2206-2223 (1991)
[60] Bermejo, R.; Staniforth, A., The conversion of semi-Lagrangian advection schemes to quasi-monotone schemes, Mon. Weather Rev., 120, 2622-2632 (1992)
[61] Jeffrey, D.; Onishi, Y., Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow, J. Fluid Mech., 139, 261-290 (1984) · Zbl 0545.76037
[62] Yeo, K.; Maxey, M., Dynamics of concentrated suspensions of non-colloidal particles in couette flow, J. Fluid Mech., 649, 205 (2010) · Zbl 1189.76677
[63] Gallier, S.; Lemaire, E.; Lobry, L.; Peters, F., Approche par domaine fictif pour la simulation des suspensions, (47eme Colloque National du Groupe Francais de Rhéologie (2012), Pau)
[64] Guazzelli, E.; Morris, J.; Pic, S., A Physical Introduction to Suspension Dynamics, vol. 45 (2011), Cambridge University Press
[65] Jeffrey, D.; Morris, J.; Brady, J., The pressure moments for two rigid spheres in low-Reynolds-number flow, Phys. Fluids A, 5, 2317-2325 (1993) · Zbl 0797.76015
[66] Claeys, I. L.; Brady, J. F., Lubrication singularities of the grand resistance tensor for two arbitrary particles, Physicochem. Hydrodyn., 11, 261-293 (1989)
[67] Cundall, P.; Strack, O., A discrete numerical model for granular assemblies, Geotechnique, 29, 47-65 (1979)
[68] Feng, Y.; Han, K.; Owen, D., Combined three-dimensional lattice Boltzmann method and discrete element method for modelling fluid-particle interactions with experimental assessment, Int. J. Numer. Methods Biomed. Eng., 81, 229-245 (2010) · Zbl 1183.76843
[69] Silbert, L.; Ertaş, D.; Grest, G.; Halsey, T.; Levine, D.; Plimpton, S., Granular flow down an inclined plane: Bagnold scaling and rheology, Phys. Rev. E, 64, 051302 (2001)
[70] Shäfer, J.; Dippel, S.; Wolf, D., Force schemes in simulations of granular materials, J. Phys. I France, 6, 5-20 (1996)
[71] Labous, L.; Rosato, A. D.; Dave, R. N., Measurements of collisional properties of spheres using high-speed video analysis, Phys. Rev. E, 56, 5717 (1997)
[72] Gondret, P.; Lance, M.; Petit, L., Bouncing motion of spherical particles in fluids, Phys. Fluids, 14, 643 (2002) · Zbl 1184.76187
[73] Verlet, L., Computer experiments on classical fluids. i. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev., 159, 98 (1967)
[74] Batchelor, G.; Green, J., The hydrodynamic interaction of two small freely-moving spheres in a linear flow field, J. Fluid Mech., 56, 375-400 (1972) · Zbl 0247.76088
[75] Carlson, M.; Mucha, P.; Turk, G., Rigid fluid: Animating the interplay between rigid bodies and fluid, ACM Trans. Graph., 23, 377-384 (2004)
[76] DaCunha, F.; Hinch, E., Shear-induced dispersion in a dilute suspension of rough spheres, J. Fluid Mech., 309, 211-223 (1996) · Zbl 0875.76635
[77] Blanc, F.; Peters, F.; Lemaire, E., Experimental signature of the pair trajectories of rough spheres in the shear-induced microstructure in noncolloidal suspensions, Phys. Rev. Lett., 107, 208302 (2011)
[78] Rampall, I.; Smart, J.; Leighton, D., The influence of surface roughness on the particle-pair distribution function of dilute suspensions of non-colloidal spheres in simple shear flow, J. Fluid Mech., 339, 1-24 (1997)
[79] Janela, J.; Lefebvre, A.; Maury, B., A penalty method for the simulation of fluid-rigid body interaction, (ESAIM Proceedings, vol. 14 (2005)), 115-123 · Zbl 1079.76043
[80] Lefebvre, A., Fluid-particle simulations with freefem++, (ESAIM Proceedings, vol. 18 (2007)), 120-132 · Zbl 1354.76109
[81] Davis, R.; Zhao, Y.; Galvin, K.; Wilson, H., Solid-solid contacts due to surface roughness and their effects on suspension behaviour, Philos. Trans. R. Soc. Lond. A, 361, 871-894 (2003) · Zbl 1134.76725
[82] Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties, vol. 16 (2001), Springer
[83] Krieger, I.; Dougherty, T., A mechanism for non-newtonian flow in suspensions of rigid spheres, J. Rheol., 3, 137 (1959) · Zbl 0100.21502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.