×

A simple interface sharpening technique with a hyperbolic tangent function applied to compressible two-fluid modeling. (English) Zbl 1349.76514

Summary: A simple interface sharpening technique based on hyperbolic tangent interpolation, which was proposed in the previous study [F. Xiao et al., Int. J. Numer. Methods Fluids 48, No. 9, 1023–1040 (2005; Zbl 1072.76046)], is applied to the compressible two-fluid modeling. The implementation of this scheme is very simple: the interpolation of the volume fraction in the monotonicity-upwind-scheme-for-conservation-law (MUSCL) solver is just replaced by the hyperbolic tangent interpolation, while the MUSCL interpolations for other variables are maintained. This technique is limited for the region near the interface to prevent the spurious oscillations of a minor phase. The one-dimensional and two-dimensional problems are solved, and the results are compared with those of the original MUSCL solver. The results show that the interface is significantly sharpened with this technique, and its sharpness is well controlled by one parameter. In addition, the robustness of the scheme does not change with sharpening the interface in the range we investigated.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76Nxx Compressible fluids and gas dynamics
76Txx Multiphase and multicomponent flows

Citations:

Zbl 1072.76046

Software:

AUSM
Full Text: DOI

References:

[1] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach, J. Comput. Phys., 125, 150-160 (1996) · Zbl 0847.76060
[2] Allaire, G.; Clerc, S.; Kokh, S., A five-equation model for the simulation of interface between compressible fluids, J. Comput. Phys., 181, 577-616 (2002) · Zbl 1169.76407
[3] Chang, C. H.; Liou, M. S., A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and \(AUSM^+\)-up scheme, J. Comput. Phys., 225, 840-873 (2007) · Zbl 1192.76030
[4] Godunov, S. K., A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics, Mat. Sb., 47, 271-306 (1959) · Zbl 0171.46204
[5] Gottlieb, S.; Shu, C.-W., Total variation diminishing Runge-Kutta schemes, Math. Comput., 67, 221, 73-85 (1998) · Zbl 0897.65058
[6] Haas, J.; Sturtevant, B., Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities, J. Fluid Mech., 181, 41-76 (1987)
[7] Harlow, F.; Amsden, A., Fluid dynamics (1971), Los Alamos National Laboratory, Technical report la-4700 · Zbl 0221.76011
[8] Hu, X.; Adams, N.; Iaccarino, G., On the HLLC Riemann solver for interface interaction in compressible multi-fluid flow, J. Comput. Phys., 228, 17, 6572-6589 (2009) · Zbl 1261.76023
[9] Hu, X.; Khoo, B.; Adams, N.; Huang, F., A conservative interface method for compressible flows, J. Comput. Phys., 219, 553-578 (2006) · Zbl 1102.76038
[10] Ii, S.; Sugiyama, K.; Takeuchi, S.; Takagi, S.; Matsumoto, Y.; Xiao, F., An interface capturing method with a continuous function: The THINC method with multi-dimensional reconstruction, J. Comput. Phys., 231, 2328-2358 (2011) · Zbl 1427.76205
[11] Johnsen, E.; Colonius, T., Implementation of WENO schemes in compressible multicomponent flow problems, J. Comput. Phys., 219, 715-732 (2006) · Zbl 1189.76351
[12] Jolgam, S.; Ballil, A.; Nowakowski, A.; Nicolleau, F., On equations of state for simulations of multiphase flows, (Proceedings of World Congress on Engineering 2012, vol. III. Proceedings of World Congress on Engineering 2012, vol. III, WCE 2012, July 4-6, 2012, London, UK (2012))
[13] Kawai, S.; Terashima, H., A high-resolution scheme for compressible multicomponent flows with shock waves, Int. J. Numer. Methods Fluids (2013)
[14] Kim, M.; Kim, S.; Kim, W.; Kim, C., Flow control of tiltrotor unmanned-aerial-vehicle airfoils using synthetic jets, J. Aircr., 48, 3, 1045-1057 (2011)
[15] Kitamura, K.; Liou, M.-S., Comparative study of AUSM-family schemes in compressible multiphase flow simulations, (ICCFD7-3702, ICCFD7 (7th International Conference on Computational Fluid Dynamics). ICCFD7-3702, ICCFD7 (7th International Conference on Computational Fluid Dynamics), Big Island, Hawai (2012))
[17] Kitamura, K.; Shima, E.; Roe, P. L., Carbuncle phenomena and other shock anomalies in three dimensions, AIAA J., 50, 12, 2655-2669 (2012)
[18] Kokh, S.; Lagoutiere, F., An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model, J. Comput. Phys., 229, 8, 2773-2809 (2010) · Zbl 1302.76129
[19] Liou, M.-S.; Chang, C.-H.; Nguyen, L.; Theofanous, T. G., How to solve compressible multifluid equations: A simple, robust, and accurate method, AIAA J., 46, 2345-2356 (2008)
[20] Movahed, P.; Johnsen, E., A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer-Meshkov instability, J. Comput. Phys., 239, 166-186 (2013)
[21] Niu, Y.-Y.; Lin, Y.-C.; Chang, C.-H., A further work on multi-phase two-fluid approach for compressible multi-phase flows, Int. J. Numer. Methods Fluids, 58, 879-896 (2008) · Zbl 1213.76126
[22] Nonomura, T.; Kitamura, K.; Fujii, K., Simple interface sharpening technique with hyperbolic tangent function applied to compressible two-fluid modeling, (Abstracts of SIAM Conference on Computational Science & Engineering (2013)), 333
[23] Nonomura, T.; Morizawa, S.; Terashima, H.; Obayashi, S.; Fujii, K., Numerical (error) issues on compressible multicomponent flows using a high-order differencing scheme: Weighted compact nonlinear scheme, J. Comput. Phys., 231, 3181-3210 (2012) · Zbl 1402.76087
[24] Paillère, H.; Corre, C.; Cascales, J. R.G., On the extension of the \(AUSM^+\) scheme to compressible two-fluid models, Comput. Fluids, 32, 891-916 (2003) · Zbl 1040.76044
[25] Quirk, J.; Karni, S., On the dynamics of a shock-bubble interaction, J. Fluid Mech., 318, 129-164 (1996) · Zbl 0877.76046
[26] Saurel, R.; Lemetayer, O., A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation, J. Fluid Mech., 431, 239-271 (2001) · Zbl 1039.76069
[27] Shukla, R.; Pantano, C.; Freund, J., An interface capturing method for the simulation of multi-phase compressible flows, J. Comput. Phys., 229, 7411-7439 (2013) · Zbl 1425.76289
[28] Shyue, K.-M., A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions, J. Comput. Phys., 215, 1, 219-244 (2006) · Zbl 1140.76401
[29] Shyue, K.-M.; Xiao, F., An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach, J. Comput. Phys. (2013), submitted for publication
[30] So, K. K.; Hu, X. Y.; Adams, N. A., Anti-diffusion interface sharpening technique for two-phase compressible flow simulations, J. Comput. Phys., 231, 4304-4323 (2012) · Zbl 1426.76428
[31] Stewart, H. B.; Wendroff, B., Two-phase flow: Models and methods, J. Comput. Phys., 56, 363-409 (1984) · Zbl 0596.76103
[32] Stuhmiller, J., The influence of interfacial pressure forces on the character of two-phase flow model equations, Int. J. Multiph. Flow, 3, 551-560 (1977) · Zbl 0368.76085
[33] Terashima, H.; Kawai, S.; Yamanishi, N., High-resolution numerical method for supercritical flows with large density variations, AIAA J., 49, 2658-2672 (2011)
[34] Terashima, H.; Tryggvason, G., A front-tracking/ghost-fluid method for fluid interfaces in compressible flows, J. Comput. Phys., 228, 4012-4037 (2009) · Zbl 1171.76046
[35] Terashima, H.; Tryggvason, G., A front-tracking method with projected interface conditions for compressible multi-fluid flows, Comput. Fluids, 39, 1804-1814 (2010) · Zbl 1245.76113
[36] van Albada, G.; van Leer, B.; Roberts, W., A comparative study of computational methods in cosmic gas dynamics, Astron. Astrophys., 108, 76-84 (1982) · Zbl 0492.76117
[37] van Leer, B., Towards the ultimate conservation difference scheme. V. A second-order sequel to Godunovʼs method, J. Comput. Phys., 32, 101-136 (1979) · Zbl 1364.65223
[38] Xiao, F.; Honma, Y.; Kono, T., A simple algebraic interface capturing scheme using hyperbolic tangent function, Int. J. Numer. Methods Fluids, 48, 9, 1023-1040 (2005) · Zbl 1072.76046
[39] Xiao, F.; Ii, S.; Chen, C., Revisit to the THINC scheme: A simple algebraic VOF algorithm, J. Comput. Phys., 230, 7086-7092 (2011) · Zbl 1408.76547
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.