×

Exact Jacobians for implicit Navier-Stokes simulations of equilibrium real gas flows. (English) Zbl 1349.76381

Summary: This paper documents the extension of several widespread flux schemes, used in finite-volume Navier-Stokes solvers, for the simulation of flows whose fluid properties must be estimated with complex thermophysical models. Exact Jacobian matrices for the convective fluxes are derived with no assumption on the fluid equations of state model for Liou’s AUSM+, Toro et al.’s HLLC, and Kurganov and Tadmor’s central scheme. The Jacobians of the diffusive fluxes are expressed using the formulation proposed by Pulliam and Steger, resulting in additional terms due to the viscosity and thermal conductivity variations. An efficient look-up table approach is thoroughly studied and proposed as an alternative to the direct solution of the equation of state model for the fluid thermophysical property evaluation. The newly introduced schemes are validated and tested in terms of accuracy and convergence rate on a series of one- and two-dimensional test cases. The results indicate that the Jacobian must be based on the same flux formulation as the one used on the right-hand side of the implicit equation to achieve numerically converged solutions.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76N15 Gas dynamics (general theory)
Full Text: DOI

References:

[1] Godunov, S. K., A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations, Mat. Sb., 47, 2, 271-306 (1959) · Zbl 0171.46204
[2] Colella, P.; Glaz, H. M., Efficient solution algorithms for the Riemann problem for real gases, J. Comput. Phys., 59, 2, 264-289 (1985) · Zbl 0581.76079
[3] Glaister, P., An approximate linearised Riemann solver for the Euler equations for real gases, J. Comput. Phys., 74, 2, 382-408 (1988) · Zbl 0632.76079
[4] Glaister, P., An approximate linearised Riemann solver for the three-dimensional Euler equations for real gases using operator splitting, J. Comput. Phys., 77, 2, 361-383 (1988) · Zbl 0644.76088
[5] Glaister, P., An efficient numerical method for compressible flows of a real gas using arithmetic averaging, Comput. Math. Appl., 28, 7, 97-113 (1994) · Zbl 0813.76060
[6] Glaister, P., Riemann solvers with primitive parameter vectors for two-dimensional compressible flows of a real gas, Comput. Math. Appl., 37, 2, 75-92 (1999) · Zbl 0952.76054
[7] Montagné, J. L.; Yee, H. C.; Vinokur, M., Comparative study of high-resolution shock-capturing schemes for a real gas, AIAA J., 27, 10, 1332-1346 (1989)
[8] Vinokur, M.; Montagné, J. L., Generalized flux-vector splitting and Roe average for an equilibrium real gas, J. Comput. Phys., 89, 2, 276-300 (1990) · Zbl 0701.76072
[9] Buffard, T.; Gallouët, T.; Hérard, J. M., A sequel to a rough Godunov scheme: application to real gases, Comput. Fluids, 29, 7, 813-847 (2000) · Zbl 0961.76048
[10] Gallouët, T.; Hérard, J. M.; Seguin, N., Some recent finite volume schemes to compute Euler equations using real gas EOS, Int. J. Numer. Methods Fluids, 39, 12, 1073-1138 (2002) · Zbl 1053.76044
[11] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 2, 357-372 (1981) · Zbl 0474.65066
[12] Mottura, L.; Vigevano, L.; Zaccanti, M., An evaluation of Roe’s scheme generalizations for equilibrium real gas flows, J. Comput. Phys., 138, 2, 354-399 (1997) · Zbl 0903.76059
[13] Steger, J. L.; Warming, R. F., Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods, J. Comput. Phys., 40, 2, 263-293 (1981) · Zbl 0468.76066
[14] van Leer, B., Flux-vector splitting for the Euler equations, (Eighth International Conference on Numerical Methods in Fluid Dynamics. Eighth International Conference on Numerical Methods in Fluid Dynamics, Lect. Notes Phys., vol. 170 (1982)), 507-512
[15] Osher, S., Numerical solution of singular perturbation problems and hyperbolic systems of conservation laws, North-Holland Math. Stud., 47, C, 179-204 (1981) · Zbl 0457.76035
[16] Liou, M. S., A sequel to AUSM: \(AUSM^+\), J. Comput. Phys., 129, 2, 364-382 (1996) · Zbl 0870.76049
[17] Liou, M. S.; van Leer, B.; Shuen, J. S., Splitting of inviscid fluxes for real gases, J. Comput. Phys., 87, 1, 1-24 (1990) · Zbl 0687.76074
[18] Suresh, A.; Liou, M. S., Osher’s scheme for real gases, AIAA J., 29, 6, 920-926 (1991)
[19] Edwards, J. R.; Franklin, R. K.; Liou, M. S., Low-diffusion flux-splitting methods for real fluid flows with phase transitions, AIAA J., 38, 9, 1624-1633 (2000)
[21] Saurel, R.; Larini, M.; Loraud, J. C., Exact and approximate Riemann solvers for real gases, J. Comput. Phys., 112, 1, 126-137 (1994) · Zbl 0799.76058
[22] Merkle, C. L.; Sullivan, J. Y.; Buelow, P. E.O.; Venkateswaran, S., Computation of flows with arbitrary equations of state, AIAA J., 36, 4, 515-521 (1998)
[23] Colonna, P.; Rebay, S., Numerical simulation of dense gas flows on unstructured grids with an implicit high resolution upwind Euler solver, Int. J. Numer. Methods Fluids, 46, 7, 735-765 (2004) · Zbl 1060.76586
[24] Colonna, P.; Harinck, J.; Rebay, S.; Guardone, A., Real-gas effects in organic Rankine cycle turbine nozzles, J. Propuls. Power, 24, 2, 282-294 (2008)
[25] Harinck, J.; Guardone, A.; Colonna, P., The influence of molecular complexity on expanding flows of ideal and dense gases, Phys. Fluids, 21, 8, 086101 (2009) · Zbl 1183.76239
[26] Cinnella, P.; Congedo, P., Numerical solver for dense gas flows, AIAA J., 43, 11, 2457-2461 (2005)
[27] Cinnella, P., Roe-type schemes for dense gas flow computations, Comput. Fluids, 35, 10, 1264-1281 (2006) · Zbl 1177.76216
[28] Congedo, P. M.; Corre, C.; Cinnella, P., Numerical investigation of dense-gas effects in turbomachinery, Comput. Fluids, 49, 1, 290-301 (2011) · Zbl 1271.76291
[29] Boncinelli, P.; Rubechini, F.; Arnone, A.; Cecconi, M.; Cortese, C., Real gas effects in turbomachinery flows: a computational fluid dynamics model for fast computations, J. Turbomach., 126, 2, 268-276 (2004)
[30] Cirri, M.; Adami, P.; Martelli, F., Development of a CFD real gas flow solver for hybrid grid, Int. J. Numer. Methods Fluids, 47, 8-9, 931-938 (2005) · Zbl 1134.76422
[31] Toro, E. F.; Spruce, M.; Speares, W., Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 4, 1, 25-34 (1994) · Zbl 0811.76053
[32] Kurganov, A.; Tadmor, E., New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys., 160, 1, 241-282 (2000) · Zbl 0987.65085
[34] Clerc, S., Numerical simulation of the homogeneous equilibrium model for two-phase flows, J. Comput. Phys., 161, 1, 354-375 (2000) · Zbl 0965.76051
[35] Meng, H.; Yang, V., A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme, J. Comput. Phys., 189, 1, 277-304 (2003) · Zbl 1097.76579
[36] Span, R.; Wagner, W., Equations of state for technical applications. I. Simultaneously optimized functional forms for nonpolar and polar fluids, Int. J. Thermophys., 24, 1, 1-39 (2003)
[37] Span, R.; Wagner, W., Equations of state for technical applications. II. Results for nonpolar fluids, Int. J. Thermophys., 24, 1, 41-109 (2003)
[38] Lemmon, E. W.; McLinden, M. O.; Huber, M. L., NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP, version 8.0 (2002), National Institute of Standards and Technology, Standard Reference Data Program: National Institute of Standards and Technology, Standard Reference Data Program Gaithersburg, Tech. rep.
[39] Berrut, J. P.; Trefethen, L. N., Barycentric Lagrange interpolation, SIAM Rev., 46, 3, 501-517 (2004) · Zbl 1061.65006
[40] van der Stelt, T. P.; Nannan, N. R.; Colonna, P., The iPRSV equation of state, Fluid Phase Equilib., 330, 0, 24-35 (2012)
[41] Span, R.; Wagner, W., A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, J. Phys. Chem. Ref. Data, 25, 6, 1509-1596 (1996)
[42] Thompson, P. A., A fundamental derivative in gasdynamics, Phys. Fluids, 14, 9, 1843-1849 (1971) · Zbl 0236.76053
[43] Batten, P.; Leschziner, M. A.; Goldberg, U. C., Average-state Jacobians and implicit methods for compressible viscous and turbulent flows, J. Comput. Phys., 137, 1, 38-78 (1997) · Zbl 0901.76043
[44] Einfeldt, B.; Munz, C. D.; Roe, P. L.; Sjögreen, B., On Godunov-type methods near low densities, J. Comput. Phys., 92, 2, 273-295 (1991) · Zbl 0709.76102
[45] Batten, P.; Clarke, N.; Lambert, C.; Causon, D. M., On the choice of wavespeeds for the HLLC Riemann solver, SIAM J. Sci. Comput., 18, 6, 1553-1570 (1997) · Zbl 0992.65088
[46] Kurganov, A.; Petrova, G., Central schemes and contact discontinuities, Math. Model. Numer. Anal., 34, 6, 1259-1275 (2000) · Zbl 0972.65055
[47] Kurganov, A.; Noelle, S.; Petrova, G., Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput., 23, 3, 707-740 (2002) · Zbl 0998.65091
[48] Kurganov, A.; Lin, C. T., On the reduction of numerical dissipation in central-upwind schemes, Commun. Comput. Phys., 2, 1, 141-163 (2007) · Zbl 1164.65455
[50] Ham, F.; Iaccarino, G., Energy conservation in collocated discretization schemes on unstructured meshes, (Annual Research Briefs 2004 (Dec. 2004), Center for Turbulence Research, NASA Ames/Stanford University: Center for Turbulence Research, NASA Ames/Stanford University CA)
[51] Pecnik, R.; Terrapon, V. E.; Ham, F.; Iaccarino, G.; Pitsch, H., Reynolds-averaged Navier-Stokes simulations of the HyShot II scramjet, AIAA J., 50, 8, 1717-1732 (2012)
[52] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 2, 439-471 (1988) · Zbl 0653.65072
[53] Satish, B.; Buschelman, K.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. C.; Smith, B. F.; Zhang, H., PETSc Web page
[54] Saad, Y.; Schultz, M., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869 (1986) · Zbl 0599.65018
[55] Colonna, P.; van der Stelt, T. P.; Guardone, A., FluidProp (Version 3.0): a program for the estimation of thermophysical properties of fluids, a program since 2004 (2012)
[56] Clerc, S., Accurate computation of contact discontinuities in flows with general equations of state, Comput. Methods Appl. Mech. Eng., 178, 3-4, 245-255 (1999) · Zbl 0964.76049
[57] Monaco, J. F.; Cramer, M. S.; Watson, L. T., Supersonic flows of dense gases in cascade configurations, J. Fluid Mech., 330, 31-59 (1997) · Zbl 0895.76038
[58] Spalart, P. R.; Allmaras, S. R., One-equation turbulence model for aerodynamic flows, Rech. Aérosp., 1, 5-21 (1994)
[59] Quartapelle, L.; Castelletti, L.; Guardone, A.; Quaranta, G., Solution of the Riemann problem of classical gasdynamics, J. Comput. Phys., 190, 1, 118-140 (2003) · Zbl 1236.76054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.