×

Higher order FE-FV method on unstructured grids for transport and two-phase flow with variable viscosity in heterogeneous porous media. (English) Zbl 1349.76262

Summary: This paper presents higher order methods for the numerical modeling of two-phase flow with simultaneous transport and adsorption of viscosifying species within the individual phases in permeable porous media. The numerical scheme presented addresses the three major challenges in simulating this process. Firstly, the component transport is strongly coupled with the viscous and capillary forces that act on the movement of the carrier phase. The discretization of the capillary parts is especially difficult since its effect on flow yields non-linear parabolic conservation equations. These are amenable to non-linear finite elements (FEs), while the capillary contribution on the component transport is first-order hyperbolic, where classical FEs are unsuitable. We solve this efficiently by a Strang splitting that uses finite volumes (FVs) with explicit time-stepping for the viscous parts and a combined finite element-finite volume (FEFV) scheme with implicit time-stepping for the capillary parts. Secondly, the components undergo hydrodynamic dispersion and discerning between numerical and physical dispersion is essential. We develop higher-order formulations for the phase and component fluxes that keep numerical dispersion low and combine them with implicit FEs such that the non-linearities of the dispersion tensor are fully incorporated. Thirdly, subsurface permeable media show strong spatial heterogeneity, with coefficients varying over many orders of magnitude and geometric complexity that make the use of unstructured grids essential. In this work, we employ node-centered FVs that combine their ability to resolve flow with the flexibility of FEs. Numerical examples of increasing complexity are presented that demonstrate the convergence and robustness of our approach and prove its versatility for highly heterogeneous, and geometrically complex fractured porous media.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76M12 Finite volume methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
76Txx Multiphase and multicomponent flows

Software:

TOUGHREACT; MRST
Full Text: DOI

References:

[1] Huber, R.; Helmig, R., Multiphase flow in heterogeneous porous media: A classical finite element method versus an implicit pressure-explicit saturation-based mixed finite element-finite volume approach, Int. J. Numer. Methods Fluids, 29, 8, 899-920 (1999) · Zbl 0938.76053
[2] Geiger, S.; Roberts, S.; Matthäi, S.; Zoppou, C.; Burri, A., Combining finite element and finite volume methods for efficient multiphase flow simulations in highly heterogeneous and structurally complex geologic media, Geofluids, 4, 284-299 (2004)
[3] Matthäi, S. K.; Geiger, S.; Roberts, S. G.; Paluszny, A.; Belayneh, M.; Burri, A.; Mezentsev, A.; Lu, H.; Coumou, D.; Driesner, T.; Heinrich, C. A., Numerical simulation of multi-phase fluid flow in structurally complex reservoirs, (Jolley, S. J.; etal., Structurally Complex Reservoirs, vol. 292 (2007), Geol. Soc. Spec. Publ.), 405-429
[4] Durlofsky, L., A triangle based mixed finite element-finite volume technique for modeling two phase flow through porous media, J. Comput. Phys., 105, 252 (1993) · Zbl 0768.76046
[5] Monteagudo, J.; Firoozabadi, A., Control-volume model for simulation of water injection in fractured media: incorporating matrix heterogeneity and reservoir wettability effects, SPE J., 12, 355-366 (2007)
[6] Reichenberger, V.; Jakobs, H.; Bastian, P.; Helmig, R., A mixed-dimensional finite volume method for two-phase flow in fractured porous media, Adv. Water Resour., 29, 1020-1036 (2006)
[7] Martin, V.; Jaffré, J.; Roberts, J., Modeling fractures and barriers as interfaces for flow in porous media, SIAM J. Sci. Comput., 26, 1667-1691 (2005) · Zbl 1083.76058
[8] Lee, S.; Lough, M.; Jensen, C., Hierarchical modeling of flow in naturally fractured formations with multiple length scales, Water Resour. Res., 37, 443-455 (2001)
[9] Hoteit, H.; Firoozabadi, A., Numerical modeling of two-phase flow in heterogeneous permeable media with different capillary pressures, Adv. Water Resour., 31, 56-73 (2008)
[10] Niessner, J.; Helmig, R., Multi-scale modeling of three-phase-three-component processes in heterogeneous porous media, Adv. Water Resour., 30, 2309-2325 (2007)
[11] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 506-517 (1968) · Zbl 0184.38503
[12] Nocedal, J.; Wright, S., Numerical Optimization (1999), Springer Verlag: Springer Verlag New-York · Zbl 0930.65067
[13] Mallison, B.; Gerritsen, M.; Jessen, K.; Orr, F., High-order upwind schemes for two-phase, multicomponent flow, SPE J., 79691, 297-311 (2005)
[14] Mikys˘ka, J.; Firoozabadi, A., Implementation of higher-order methods for robust and efficient compositional simulation, J. Comput. Phys., 229, 2898-2913 (2010) · Zbl 1307.76053
[15] Karimi-Fard, M.; Gong, B.; Durlofsky, L., Generation of coarse-scale continuum flow models from detailed fracture characterizations, Water Resour. Res., 42 (2006)
[16] Geiger, S.; Matthäi, S. K.; Niessner, J.; Helmig, R., Black-oil simulations for three-component – three-phase flow in fractured porous media, SPE J., 14, 338-354 (2009)
[17] Moortgat, J.; Sun, S.; Firoozabadi, A., Compositional modeling of three-phase flow with gravity using higher-order finite element methods, Water Resour. Res., 47 (2011)
[18] Moortgat, J.; Firoozabadi, A., Higher-order compositional modeling with Fickian diffusion in unstructured and anisotropic media, Adv. Water Resour., 33, 951-968 (2010)
[19] Datta-Gupta, A.; Yoon, S.; Vasco, D. W.; Pope, G. A., Inverse modeling of partitioning interwell tracer tests: a streamline approach, Water Resour. Res., 38, 10-1029 (2002)
[20] Khan, S. A.; Pope, G. A.; Trangenstein, J. A., Micellar/polymer physical-property models for contaminant cleanup problems and enhanced oil recovery, Transp. Porous Med., 24, 35-79 (1996)
[21] West, C. C.; Harwell, J. H., Surfactants and subsurface remediation, Environ. Sci. Technol., 26, 2324-2330 (1992)
[22] Sorbie, K. S.; Mackay, E. J., Mixing of injected, connate and aquifer brines in waterflooding and its relevance to oilfield scaling, J. Petrol. Sci. Eng., 27, 85-106 (2000)
[23] Mackay, E., Predicting in situ sulphate scale deposition and the impact on produced ion concentrations, Chem. Eng. Res. Des., 81, 326-332 (2003)
[24] Austad, T.; Strand, S.; Madland, M.; Puntevold, T.; Korsnes, R., Seawater in chalk: an eor and compaction fluid, SPE Res. Eval. Eng., 11, 648-654 (2008)
[26] Javadpour, F., \(CO_2\) injection in geological formations: determining macroscale coefficients from pore scale processes, Transp. Porous Med., 79, 87-105 (2009)
[27] Xu, T.; Sonnenthal, E.; Spycher, N.; Pruess, K., TOUGHREACT - a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and \(CO_2\) geological sequestration, Comput. Geosci., 32, 145-165 (2006)
[28] Aavatsmark, I., An introduction to multipoint flux approximations for quadrilateral grids, Comput. Geosci., 6, 405-432 (2002) · Zbl 1094.76550
[29] Lie, K.; Krogstad, S.; Ligaarden, I.; Natvig, J.; Nilsen, H.; Skaflestad, B., Open source matlab implementation of consistent discretisations on complex grids, Comput. Geosci., 1-26 (2011)
[30] Edwards, M.; Zheng, H., Double-families of quasi-positive darcy-flux approximations with highly anisotropic tensors on structured and unstructured grids, J. Comput. Phys., 229, 594-625 (2010) · Zbl 1253.76091
[31] Edwards, M., Unstructured, control-volume distributed, full-tensor finite-volume schemes with flow based grids, Comput. Geosci., 6, 433-452 (2002) · Zbl 1036.76034
[32] Lamine, S.; Edwards, M., Higher-resolution convection schemes for flow in porous media on highly distorted unstructured grids, Int. J. Numer. Methods Eng., 76, 1139-1158 (2008) · Zbl 1195.76266
[33] Edwards, M., Higher-resolution hyperbolic-coupled-elliptic flux-continuous CVD schemes on structured and unstructured grids in 2-d, Int. J. Numer. Methods Fluids, 51, 1059-1077 (2006) · Zbl 1158.76363
[34] Edwards, M., Higher-resolution hyperbolic-coupled-elliptic flux-continuous CVD schemes on structured and unstructured grids in 3-d, Int. J. Numer. Methods Fluids, 51, 1079-1095 (2006) · Zbl 1158.76364
[36] Sandve, T.; Berre, I.; Nordbotten, J., An efficient multi-point flux approximation method for discrete fracture-matrix simulations, J. Comput. Phys., 231, 3784-3800 (2012) · Zbl 1402.76131
[37] Karimi-Fard, M.; Durlofsky, L.; Aziz, K., An efficient discrete-fracture model applicable for general-purpose reservoir simulators, SPE J., 9, 227-236 (2004)
[38] Niessner, J.; Helmig, R.; Jakobs, H.; Roberts, J., Interface condition and linearization schemes in the newton iterations for two-phase flow in heterogeneous porous media, Adv. Water Resour., 28, 671-687 (2005)
[39] Blunt, M. J.; Liu, K.; Thiele, M. R., A generalized streamline method to predict reservoir flow, Pet. Geosci., 2, 259-269 (1996)
[40] King, M. J.; Datta-Gupta, A., Streamline simulation: a current perspective, In Situ, 22, 91-140 (1998)
[41] Bear, J., Dynamics of Fluids in Porous Media (1972), Dover: Dover New York, NY · Zbl 1191.76001
[42] Muskat, M., Physical Principles of Oil Production (1949), McGraw Hill: McGraw Hill New York
[44] Van Genuchten, M., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892-898 (1980)
[45] Schmid, K.; Geiger, S.; Sorbie, K., Analytical solutions for co-and counter-current imbibition of sorbing, dispersive solutes in immiscible two-phase flow, Comput. Geosci., 16 (2012) · Zbl 1348.76171
[46] Pope, G. A., The application of fractional flow theory to enhanced oil recovery, SPE J., 20, 3, 191-205 (1980)
[47] Herbert, A.; Jackson, C.; Lever, D., Coupled groundwater flow and solute transport with fluid density strongly dependent upon concentration, Water Resour. Res., 24, 1781-1795 (1988)
[48] Nield, D.; Bejan, A., Convection in Porous Media (2006), Springer Verlag · Zbl 1256.76004
[49] Peaceman, D. W., Fundamentals of Numerical Reservoir Simulation (1977), Elsevier: Elsevier Amsterdam
[50] Aziz, K.; Settari, A., Petroleum Reservoir Simulation (1979), Applied Science Publishers: Applied Science Publishers London, UK
[51] Gerritsen, M.; Durlofsky, L., Modelling fluid flow in oil reservoirs, Annu. Rev. Fluid Mech., 37, 211-238 (2005) · Zbl 1082.76107
[52] Nayagum, D.; Schäfer, G.; Mosé, R., Modelling two-phase incompressible flow in porous media using mixed hybrid and discontinuous finite elements, Comput. Geosci., 8, 49-73 (2004) · Zbl 1221.76119
[53] Paluszny, A.; Matthäi, S.; Hohmeyer, M., Hybrid finite element-finite volume discretization of complex geologic structures and a new simulation workflow demonstrated on fractured rocks, Geofluids, 7, 186-208 (2007)
[54] Durlofsky, L., Accuracy of mixed and control volume finite element approximations to Darcy velocity and related quantities, Water Resour. Res., 30, 965-973 (1994)
[55] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1979), North Holland Publishing Company: North Holland Publishing Company Amsterdam, New-York, Oxford
[56] Stüben, K., A review of algebraic multigrid, J. Comput. Appl. Math., 128, 281-309 (2001) · Zbl 0979.65111
[57] Krechel, A.; Stüben, K., Parallel algebraic multigrid based on subdomain blocking, Parallel Comput., 27, 1009-1031 (2001) · Zbl 0971.68215
[58] Matthäi, S.; Nick, H.; Pain, C.; Neuweiler, I., Simulation of solute transport through fractured rock: a higher-order accurate finite-element finite-volume method permitting large time steps, Transp. Porous Med., 83, 2, 1-30 (2009)
[60] Siegel, P.; Mos, R.; Ackerer, P.; Jaffre, J., Solution of the advection-diffusion equation using a combination of discontinuous and mixed finite elements, Int. J. Numer. Methods Fluids, 24, 595-613 (1997) · Zbl 0894.76041
[61] Blunt, M.; Rubin, B., Implicit flux limiting schemes for petroleum reservoir simulation, J. Comput. Phys., 102, 194-210 (1992) · Zbl 0775.76109
[62] Celia, M. A.; Bouloutas, E. T.; Zarba, L. R., A general mass-conservative numerical solution for the unsaturated flow equation, Water Resour. Res., 26, 1483-1496 (1990)
[63] Jenny, P.; Tchelepi, H.; Lee, S., Unconditionally convergent nonlinear solver for hyperbolic conservation laws with S-shaped flux functions, J. Comput. Phys., 228, 7497-7512 (2009) · Zbl 1391.76553
[64] Johansen, T.; Winther, R., The solution of the Riemann problem for a hyperbolic system of conservation laws modeling polymer flooding, SIAM J. Math. Anal., 19, 541-566 (1988) · Zbl 0658.35061
[65] LeVeque, R., Numerical Methods for Conservation Laws (1992), Birkhäuser · Zbl 0847.65053
[66] Buffard, T.; Clain, S., Monoslope and multislope MUSCL methods for unstructured meshes, J. Comput. Phys., 229, 3745-3776 (2010) · Zbl 1189.65204
[67] Hubbard, M. E., Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids, J. Comput. Phys., 155, 54-74 (1999) · Zbl 0934.65109
[68] Leonard, B., Simple high-accuracy resolution program for convective modelling of discontinuities, Int. J. Numer. Methods Eng., 8, 1291-1318 (1988) · Zbl 0667.76125
[69] Van Leer, B., Towards the ultimate conservative difference scheme. II: Monotonicity and conservation combined in a second-order scheme, J. Comput. Phys., 14, 361-370 (1974) · Zbl 0276.65055
[71] Harten, A., High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 357-393 (1983) · Zbl 0565.65050
[72] Sweby, P., High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21, 995-1011 (1984) · Zbl 0565.65048
[73] Arminjon, P.; Dervieux, A., Construction of TVD-like artificial viscosities on two-dimensional arbitrary FEM grids, J. Comput. Phys., 106, 176-198 (1993) · Zbl 0771.65062
[74] Jameson, A., Analysis and design of numerical schemes for gas dynamics. 1: Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence, Int. J. Comput. Fluid Dyn., 4, 171-218 (1995)
[75] Batten, P.; Lambert, C.; Causon, D., Positively conservative high-resolution convection schemes for unstructured elements, Int. J. Numer. Methods Eng., 39, 1821-1838 (1996) · Zbl 0884.76048
[76] Schmid, K. S.; Geiger, S.; Sorbie, K. S., Semianalytical solutions for co- and countercurrent imbibition and dispersion of solutes in immiscible two-phase flow, Water Resour. Res., 47 (2011)
[77] Spivak, A.; Price, H.; Settari, A., Solution of the equations for multidimensional, two-phase, immiscible flow by variational methods, SPE J., 17, 27-41 (1977)
[78] Coumou, D.; Matthäi, S.; Geiger, S.; Driesner, T., A parallel FE-FV scheme to solve fluid flow in complex geologic media, Comput. Geosci., 34, 1697-1707 (2008)
[79] Nick, H.; Matthäi, S., A hybrid finite-element finite-volume method with embedded discontinuities for solute transport in heterogeneous media, Vadose Zone J., 10, 299-312 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.