×

A Cartesian scheme for compressible multimaterial models in 3D. (English) Zbl 1349.74370

Summary: We model the three-dimensional interaction of compressible materials separated by sharp interfaces. We simulate fluid and hyperelastic solid flows in a fully Eulerian framework. The scheme is the same for all materials and can handle large deformations and frictionless contacts. Necessary conditions for hyperbolicity of the hyperelastic neohookean model in three dimensions are proved thanks to an explicit computation of the characteristic speeds. We present stiff multimaterial interactions including air-helium and water-air shock interactions, projectile-shield impacts in air and rebounds.

MSC:

74S20 Finite difference methods applied to problems in solid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
74B20 Nonlinear elasticity
76Nxx Compressible fluids and gas dynamics

References:

[1] Allaire, G.; Clerc, S.; Kokh, S., A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys., 181, 2, 577-616 (2002) · Zbl 1169.76407
[2] Barton, P. T.; Deiterding, R.; Meiron, D.; Pullin, D., Eulerian adaptive finite-difference method for high-velocity impact and penetration problems, J. Comput. Phys., 240, C, 76-99 (2013)
[3] Barton, P. T.; Drikakis, D., An Eulerian method for multi-component problems in non-linear elasticity with sliding interfaces, J. Comput. Phys., 229, 15, 5518-5540 (2010) · Zbl 1346.74179
[4] Barton, P. T.; Drikakis, D.; Romenski, E.; Titarev, V. A., Exact and approximate solutions of Riemann problems in non-linear elasticity, J. Comput. Phys., 228, 18, 7046-7068 (2009) · Zbl 1172.74032
[5] Barton, P. T.; Obadia, B.; Drikakis, D., A conservative level-set based method for compressible solid/fluid problems on fixed grids, J. Comput. Phys., 230, 21, 7867-7890 (2011) · Zbl 1432.74060
[6] Berndt, M.; Breil, J.; Galera, S.; Kucharik, M.; Maire, P.-H.; Shashkov, M., Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods, J. Comput. Phys., 230, 17, 6664-6687 (2011) · Zbl 1408.65077
[7] Cottet, G. H.; Maitre, E.; Milcent, T., Eulerian formulation and level set models for incompressible fluid-structure interaction, ESAIM: Math. Model. Numer. Anal., 42, 471-492 (2008) · Zbl 1163.76040
[8] Davis, S., Simplified second-order Godunov-type methods, SIAM J. Sci. Stat. Comput., 9, 3, 445-473 (1988) · Zbl 0645.65050
[9] Favrie, N.; Gavrilyuk, S.; Ndanou, S., A thermodynamically compatible splitting procedure in hyperelasticity, J. Comput. Phys., 270, C, 300-324 (2014) · Zbl 1349.74344
[10] Favrie, N.; Gavrilyuk, S. L., Diffuse interface model for compressible fluid - compressible elastic-plastic solid interaction, J. Comput. Phys., 231, 7, 2695-2723 (2012) · Zbl 1430.74036
[11] Favrie, N.; Gavrilyuk, S. L.; Saurel, R., Solid-fluid diffuse interface model in cases of extreme deformations, J. Comput. Phys., 228, 16, 6037-6077 (2009) · Zbl 1280.74013
[12] Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 457-492 (1999) · Zbl 0957.76052
[13] Galera, S.; Maire, P.-H.; Breil, J., A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction, J. Comput. Phys., 229, 16, 5755-5787 (2010) · Zbl 1346.76105
[14] Gavrilyuk, S. L.; Favrie, N.; Saurel, R., Modelling wave dynamics of compressible elastic materials, J. Comput. Phys., 227, 5, 2941-2969 (2008) · Zbl 1155.74020
[15] Godunov, S. K., Elements of Continuum Mechanics (1978), Nauka: Nauka Moscow
[16] Gorsse, Y.; Iollo, A.; Milcent, T.; Telib, H., A simple cartesian scheme for compressible multimaterials, J. Comput. Phys., 272, 772-798 (2014) · Zbl 1349.76333
[17] Hill, D. J.; Pullin, D.; Ortiz, M.; Meiron, D., An Eulerian hybrid WENO centered-difference solver for elastic-plastic solids, J. Comput. Phys., 229, 24, 9053-9072 (2010) · Zbl 1427.74028
[18] Holzapfel, G. A., Nonlinear Solid Mechanics. A Continuum Approach for Engineering (2000), J. Wiley and Sons · Zbl 0980.74001
[19] Jiang, G. S.; Shu, C. W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 1, 202-228 (1996) · Zbl 0877.65065
[20] Kluth, G.; Despres, B., Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme, J. Comput. Phys., 229, 24, 9092-9118 (2010) · Zbl 1427.74029
[21] Maire, P.-H.; Abgrall, R.; Breil, J.; Loubère, R.; Rebourcet, B., A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids, J. Comput. Phys., 235, C, 626-665 (2013) · Zbl 1291.74186
[22] Marquina, A.; Mulet, P., A flux-split algorithm applied to conservative models for multicomponent compressible flows, J. Comput. Phys., 185, 1, 120-138 (2003) · Zbl 1064.76078
[23] Miller, G. H., An iterative Riemann solver for systems of hyperbolic conservation laws, with application to hyperelastic solid mechanics, J. Comput. Phys., 193, 1, 198-225 (2003) · Zbl 1047.65069
[24] Miller, G. H.; Colella, P., A conservative three-dimensional Eulerian method for coupled solid-fluid shock capturing, J. Comput. Phys., 183, 1, 26-82 (2002) · Zbl 1057.76558
[25] Ndanou, S.; Favrie, N.; Gavrilyuk, S., Criterion of hyperbolicity in hyperelasticity in the case of the stored energy in separable form, J. Elast., 115, 1, 1-25 (2013) · Zbl 1302.35254
[26] Plohr, B. J.; Sharp, D. H., A conservative Eulerian formulation of the equations for elastic flow, Adv. Appl. Math., 9, 481-499 (1988) · Zbl 0663.73012
[27] Plohr, B. J.; Sharp, D. H., A conservative formulation for plasticity, Adv. Appl. Math., 13, 462-493 (1992) · Zbl 0771.73022
[28] Quirk, J.; Karni, S., On the dynamics of a shock-bubble interaction, J. Fluid Mech., 318, 1, 129-163 (1996) · Zbl 0877.76046
[29] Toro, E. F.; Spruce, M.; Speares, W., Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 4, 25-34 (1994) · Zbl 0811.76053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.