×

Nonlinear response analysis for a dual-rotor system with a breathing transverse crack in the hollow shaft. (English) Zbl 1349.74329

Summary: This paper focuses on the nonlinear response characteristics of a dual-rotor system with a breathing transverse crack in the hollow shaft of the high-pressure rotor (rotor 1). A finite element model of the system is set up, and the motion equations of the system are formulated, in which the unbalance excitations of the rotor 1 and rotor 2 (low-pressure rotor) and the time-varying stiffness of the cracked shaft are considered. By using the harmonic balance method, the motion equations are analytically solved to obtain the dynamic responses of the two rotors. Accordingly, the effects of the crack depth and location on the vibration amplitudes are discussed in detail. The results indicate that when a transverse crack appears, it may bring super-harmonic responses to the rotor system, and the resonance peaks at the second, third and even fourth subcritical whirling speeds of the two rotors can be observed. The deeper the crack is, the larger the resonances amplitudes are, especially when the crack is located in the middle of the shaft or around the disks. In addition, the super-harmonic responses of rotor 1 where the crack located, can also be observed in rotor 2, which means that the crack signals can be detected in the entire system. Moreover, the numerical computations are carried out by using the Newmark-\(\beta\) method, which shows great agreement with the previous analytical results. The results obtained in this paper will contribute to the modeling and the fault diagnosis of dual-rotor systems with hollow-shaft crack.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74R20 Anelastic fracture and damage
74H45 Vibrations in dynamical problems in solid mechanics
Full Text: DOI

References:

[1] Chen, Y.S., Zhang, H.B.: Review and prospect on the research of dynamics of the aero-engine system. Acta Aeronaut. et Astronaut. Sin. 32(8), 1371-1391 (2011)
[2] Gasch R.: Dynamic behaviour of a simple rotor with a cross-sectional crack. Vib. Rotat. Mach. Proceedings of the International Conference, Institution of Mechanical Engineers [Paper C178/76], 123-128 (1976)
[3] Gasch, R.: A survey of the dynamic behaviour of a simple rotating shaft with a transverse crack. J. Sound Vib. 160(2), 313-332 (1993) · Zbl 0925.73332 · doi:10.1006/jsvi.1993.1026
[4] Gasch, R.: Dynamic behavior of the Laval rotor with a transverse crack. Mech. Syst. Signal Process. 22, 790-804 (2008) · doi:10.1016/j.ymssp.2007.11.023
[5] Mayes, I.W., Davies, W.G.R.: Analysis of the response of a multi-rotor-bearing system containing a transverse crack in a rotor. J. Vib. Acoust. 106(1), 139-145 (1984) · doi:10.1115/1.3269142
[6] Papadopoulos, C.A., Dimarogonas, A.D.: Coupled longitudinal and bending vibrations of a rotating shaft with an open crack. J. Sound Vib. 117(1), 81-93 (1987) · doi:10.1016/0022-460X(87)90437-8
[7] Dimarogonas, A.D.: Vibration of cracked structures: a state of the art review. Eng. Fract. Mech. 55(5), 831-857 (1996) · doi:10.1016/0013-7944(94)00175-8
[8] Wauer, J.: On the dynamics of cracked rotors: a literature survey. Appl. Mech. Rev. 43(1), 13-17 (1990) · doi:10.1115/1.3119157
[9] Jun, O.S., Eun, H.J., Earmme, Y.Y., Lee, C.W.: Modelling and vibration analysis of a simple rotor with a breathing crack. J. Sound Vib. 155(2), 273-290 (1992) · Zbl 0925.73297 · doi:10.1016/0022-460X(92)90511-U
[10] Chen, C., Dai, L.: Bifurcation and chaotic response of a cracked rotor system with viscoelastic supports. Nonlinear Dyn. 50(3), 483-509 (2007) · Zbl 1177.74198 · doi:10.1007/s11071-006-9186-x
[11] Sinou, J.J., Lees, A.W.: The influence of cracks in rotating shafts. J. Sound Vib. 285(4), 1015-1037 (2005) · doi:10.1016/j.jsv.2004.09.008
[12] Sinou, J.J.: Effects of a crack on the stability of a non-linear rotor system. Int. J. Nonlinear Mech. 42(7), 959-972 (2007) · doi:10.1016/j.ijnonlinmec.2007.04.002
[13] Sinou, J.J., Lees, A.W.: A non-linear study of a cracked rotor. Eur. J. Mech. A Solids 26(1), 152-170 (2007) · Zbl 1105.74037 · doi:10.1016/j.euromechsol.2006.04.002
[14] Sinou, J.J.: Detection of cracks in rotor based on the \[2\times \]× and \[3\times \]× super-harmonic frequency components and the crack-unbalance interactions. Commun. Nonlinear Sci. Numer. Simul. 13(9), 2024-2040 (2008) · doi:10.1016/j.cnsns.2007.04.008
[15] AL-Shudeifat, M.A., Butcher, E.A., Stern, C.R.: General harmonic balance solution of a cracked rotor-bearing-disk system for harmonic and sub-harmonic analysis: analytical and experimental approach. Int. J. Eng. Sci. 48(10), 921-935 (2010) · doi:10.1016/j.ijengsci.2010.05.012
[16] Al-Shudeifat, M.A., Butcher, E.A.: New breathing functions for the transverse breathing crack of the cracked rotor system: Approach for critical and subcritical harmonic analysis. J. Sound Vib. 330(3), 526-544 (2011) · doi:10.1016/j.jsv.2010.08.022
[17] AL-Shudeifat, M.A.: On the finite element modeling of the asymmetric cracked rotor. J. Sound Vib. 332(11), 2795-2807 (2013) · doi:10.1016/j.jsv.2012.12.026
[18] Sekhar, A.S.: Crack identification in a rotor system: a model-based approach. J. Sound Vib. 270(4), 887-902 (2004) · doi:10.1016/S0022-460X(03)00637-0
[19] Darpe, A.K.: A novel way to detect transverse surface crack in a rotating shaft. J. Sound Vib. 305(1), 151-171 (2007) · doi:10.1016/j.jsv.2007.03.070
[20] Sawicki, J.T., Friswell, M.I., Kulesza, Z., Wroblewski, A., Lekki, J.D.: Detecting cracked rotors using auxiliary harmonic excitation. J. Sound Vib. 330(7), 1365-1381 (2011) · doi:10.1016/j.jsv.2010.10.006
[21] Haji, Z.N., Oyadiji, S.O.: The use of roving discs and orthogonal natural frequencies for crack identification and location in rotors. J. Sound Vib. 333(23), 6237-6257 (2014) · doi:10.1016/j.jsv.2014.05.046
[22] Zhang, B., Li, Y.: Six degrees of freedom coupled dynamic response of rotor with a transverse breathing crack. Nonlinear Dyn. 78(3), 1843-1861 (2014) · doi:10.1007/s11071-014-1563-2
[23] Hou, L., Chen, Y.S., Li, Z.G.: Constant-excitation caused response in a class of parametrically excited systems with two degrees of freedom. Acta Phys. Sin. 63, 134501 (2014)
[24] Yang, Y.F., Ren, X.M., Qin, W.Y., Wu, Y.F., Zhi, X.Z.: Analysis on the nonlinear response of cracked rotor in hover flight. Nonlinear Dyn. 61, 183-192 (2010) · Zbl 1204.70014 · doi:10.1007/s11071-009-9640-7
[25] Zhou, T., Sun, Z., Xu, J., Han, W.: Experimental analysis of cracked rotor. J Dyn. Syst. Meas. Control 127(3), 313-320 (2005) · doi:10.1115/1.1978908
[26] Sinou, J.J.: Experimental study on the nonlinear vibrations and n \[\times \]× amplitudes of a rotor with a transverse crack. J. Vib. Acoust. 131(4), 041008 (2009) · doi:10.1115/1.3086928
[27] Chiang, H.W.D., Hsu, C.N., Tu, S.H.: Rotor-bearing analysis for turbomachinery single-and dual-rotor systems. J. Propuls. Power. 20(6), 1096-1104 (2004) · doi:10.2514/1.3133
[28] Aero-Engine Design Manual Compiling Committee.: Aero-engine Design Manual 19th Part: Rotor Dynamics and Whole-Engine Vibration. Aviation Industry Press, Beijing (2000)
[29] Chen, Y.S.: Nonlinear Dynamics. Higher Education Press, Beijing (2002)
[30] Luo, G.H., Hu, X., Yang, X.G.: Nonlinear dynamic performance analysis of counter-rotating dual-rotor system. J. Vib. Eng. 22, 268-273 (2009)
[31] Chen, S.T., Wu, Z.Q.: Rubbing vibration analysis for a counter-rotating dual-rotor system. J. Vib. Shock. 31, 142-147 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.