×

Theory of moving contact of anisotropic piezoelectric materials via real fundamental solutions approach. (English) Zbl 1349.74284

Summary: A general theory for the moving contact behaviors of anisotropic piezoelectric materials under the action of a rigid flat or cylindrical punch is proposed. It is assumed that the punch is either a perfectly electric conductor or a perfectly electric insulator. The Galilean transformation, Fourier sine and cosine transforms are employed to solve the piezoelectric governing equations containing the inertial terms. The characteristic equation is a double-biquadrate equation. A detailed analysis is performed for the eigenvalue distribution and real fundamental solutions are derived for each eigenvalue distribution. The originally mixed boundary value problem is reduced to the Cauchy integral equations and then exact solutions to these integral equations are obtained for the conducting or insulated punch with the flat or cylindrical punch profile. Finally, closed-form expressions for the stresses and electric displacements are derived. The present analysis provides a scientific basis for the interpretation of contact behaviors of anisotropic piezoelectric materials.

MSC:

74M20 Impact in solid mechanics
74F15 Electromagnetic effects in solid mechanics
74M05 Control, switches and devices (“smart materials”) in solid mechanics
74H05 Explicit solutions of dynamical problems in solid mechanics
Full Text: DOI

References:

[1] Ashida, F.; Tauchert, T. R., Transient response of a piezothermoelastic circular disk under axisymmetric heating, Acta Mech., 128, 1-14 (2001) · Zbl 0921.73225
[2] Babaei, M. H.; Chen, Z. T., Transient thermopiezoelectric response of a one-dimensional functionally graded piezoelectric medium to a moving heat source, Arch. Appl. Mech., 80, 803-813 (2010) · Zbl 1271.74071
[3] Bhargava, R. R.; Setia, A., A strip yield model solution for an internally cracked piezoelectric strip, Mech. Comput. Mater., 44, 451-464 (2008)
[4] Chen, W. Q., Inclined circular flat punch on a transversely isotropic piezoelectric half-space, Arch. Appl. Mech., 69, 455-464 (1999) · Zbl 0971.74058
[5] Chung, M. Y.; Ting, T. C.T., Line force, charge and dislocation in angularly inhomogeneous anisotropic piezoelectric wedges and spaces, Philo. Mag. A, 71, 1335-1343 (1995)
[6] Ding, H. J.; Hou, P. F.; Gou, F. L., The elastic and electric fields for three-dimensional contact for transversely isotropic piezoelectric materials, Int. J. Solids Struct., 37, 3210-3229 (2000) · Zbl 0995.74016
[7] Giannakopoulos, A. E.; Pallot, P., Two-dimensional contact analysis of elastic graded materials, J. Mech. Phys. Solids, 48, 1597-1631 (2000) · Zbl 0963.74040
[8] Giannakopoulos, A. E.; Suresh, S., Theory of Indentation of piezoelectric materials, Acta Mater., 47, 2153-2164 (1999)
[9] Hills, D. A.; Nowell, D.; Sackfield, A., Mechanics of Elastic Contacts (1993), Butterworth, Heinemann: Butterworth, Heinemann Oxford, UK · Zbl 0631.73097
[10] Karapetian, E.; Kachanov, M.; Kalinin, S. V., Nanoelectromechanics of piezoelectric indentation and applications to scanning probe microscopy of ferroelectric materials, Philo. Mag. B, 85, 1017-1051 (2005)
[11] Ke, L. L.; Yang, J.; Kitipornchai, S.; Wang, Y. S., Electro-mechanical frictionless contact behavior of a functionally graded piezoelectric layered half-plane under a rigid punch, Int. J. Solids Struct., 45, 3313-3333 (2008) · Zbl 1169.74504
[12] Ke, L. L.; Wang, Y. S.; Yang, J.; Kitipornchai, S., Sliding frictional contact analysis of functionally graded piezoelectric layered half-plane, Acta Mech., 209, 249-268 (2010) · Zbl 1381.74157
[13] Li, Y. D.; Lee, K. Y., Crack tip shielding and anti-shielding effects of the imperfect interface in a layered piezoelectric sensor, Int. J. Solids Struct., 46, 1736-1742 (2009) · Zbl 1217.74103
[14] Li, Y. D.; Lee, K. Y., Effects of finite dimension on the electro-elastic responses of an interface electrode in a piezoelectric actuator, ZAMM Z. Ang. Math. Mech., 90, 42-52 (2010) · Zbl 1355.74039
[15] Li, Y. D.; Lee, K. Y., Mode I fracture analysis of a piezoelectric strip based on real fundamental solutions, Eur. J. Mech. A/Solids, 30, 158-166 (2011) · Zbl 1261.74028
[16] Liu, J. X.; Wang, B.; Du, S. Y., Two-dimensional electroelastic fundamental solutions for general anisotropic piezoelectric media, Appl. Math. Mech., 18, 949-956 (1997) · Zbl 0904.73051
[17] Ma, L. F.; Chen, Y. H., Weight functions for interface cracks in dissimilar anisotropic piezoelectric materials, Int. J. Fract., 110, 263-279 (2001)
[18] Makagon, A.; Kachanov, M.; Karapetian, E.; Kalinin, S. V., Piezoelectric indentation of a flat circular punch accompanied by frictional sliding and applications to scanning probe microscopy, Int.J. Eng. Sci., 47, 221-239 (2009)
[19] McMahon, J., Piezo motors and actuators: streamlining medical device performance, Eur. Med. Device Technol. (March 8, 2010)
[20] Nan, C. W.; Bichurin, M. I.; Dong, S. X.; Viehland, D.; Srinivasan, G., Multiferroic magnetoelectric composites: historical perspective, status, and future directions, J. Appl. Phys., 103, 031101 (2008)
[21] Narita, F.; Shindo, Y., Mode I crack growth rate for yield strip mode of a narrow piezoelectric ceramic body, Theor. Appl. Fract. Mech., 36, 73-85 (2001)
[22] Ootao, Y.; Tanigawa, Y., Transient piezothermoelastic analysis for a functionally graded thermopiezoelectric hollow sphere, Compo. Struct., 81, 540-549 (2007)
[23] Ootao, Y.; Akai, T.; Tanigawa, Y., Transient piezothermoelastic analysis for a functionally graded thermopiezoelectric hollow cylinder, J. Thermal Stresses, 31, 935-955 (2008)
[24] Ootao, Y., Transient Thermoelastic and piezothermoelastic problems of functionally graded materials, J. Thermal Stresses, 32, 656-697 (2009)
[25] Ramirez, G.; Heyliger, P., Frictionless contact in a layered piezoelectric half-space, Smart Mater. Struct., 12, 612-625 (2003)
[26] Ramirez, G., Frictionless contact in a layered piezoelectric media characterized by complex eigenvalues, Smart Mater. Struct., 15, 1287-1295 (2006)
[27] Soh, A. K.; Liu, J. X.; Lee, K. L.; Fang, D. N., On a moving Griffith crack in anisotropic piezoelectric solids, Arch. Appl. Mech., 72, 458-469 (2002) · Zbl 1084.74545
[28] Soh, A. K.; Liu, J. X.; Lee, K. L.; Fang, D. N., Moving dislocations in general anisotropic piezoelectric solids, Phys. Stat. Sol., 242, 842-853 (2005)
[29] Spaldin, N. A.; Fiebig, M., The renaissance of magnetoelectric multiferroics, Science, 309, 391-392 (2005)
[30] Tauchert, T. R.; Ashida, F.; Noda, N.; Adali, S.; Verijenko, V., Developments in thermopiezoelasticity with relevance to smart composite structures, Compos. Struct., 48, 31-38 (2000)
[31] Tiersten, H. F., Linear Piezoelectric Plate Vibrations (1969), Plenum: Plenum New York
[32] Ueda, S., Transient response of a cracked piezoelectric strip under thermoelectric loading, J. Thermal Stresses, 29, 973-e994 (2006)
[33] Wang, X. Y.; Yu, S. W., Transient response of a crack in piezoelectric strip subjected to the mechanical and electrical impacts: mode-I problem, Mech. Mater., 33, 11-20 (2001)
[34] Wang, B. L.; Han, J. C.; Du, S. Y.; Zhang, H. Y.; Sun, Y. G., Electromechanical behavior of a finite piezoelectric layer under a flat punch, Int. J. Solids Struct., 45, 6384-6398 (2008) · Zbl 1168.74412
[35] Wang, J. H.; Chen, C. Q.; Lu, T. J., Indentation responses of piezoelectric films, J. Mech. Phys. Solids, 56, 3331-3351 (2008) · Zbl 1171.74346
[36] Yang, F. Q., Analysis of the axisymmetric indentation of a semi-infinite piezoelectric material: the evaluation of the contact stiffness and the effective piezoelectric constant, J. Appl. Phys., 103, 074115 (2008)
[37] Zhou, Y. T.; Lee, K. Y., Thermo-electro-mechanical contact behavior of a finite piezoelectric layer under a sliding punch with frictional heat generation, J. Mech. Phys. Solids, 59, 1037-1061 (2011) · Zbl 1270.74151
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.