×

Application of Newton’s law of motion to constrained mechanical systems possessing configuration manifolds with time-dependent geometric properties. (English) Zbl 1349.70033

Summary: This study is focused on a class of discrete mechanical systems subject to equality motion constraints involving time and acatastatic terms. In addition, their original configuration manifold possesses time-dependent geometric properties. The emphasis is placed on a proper application of Newton’s law of motion. A key step is to consider the corresponding event manifold, whose dimension is bigger by one than the configuration manifold, since a temporal coordinate is added to the original set of spatial coordinates. Then, its geometric properties are determined and Newton’s law is applied on it, when no motion constraints exist. Next, the way of introducing time dependence in the geometric properties of the configuration manifold through a coordinate transformation in the event manifold is investigated and clarified. Moreover, similar time effects introduced through the motion constraints are also examined. Based on these and application of foliation theory, a geometric definition of a scleronomic manifold is then provided, accompanied by a set of coordinate invariant conditions. The analysis is completed by deriving an appropriate set of equations of motion on the original configuration manifold, when additional constraints are imposed. These equations appear as a system of second-order ordinary differential equations. Finally, the analytical findings are enhanced and illustrated further by considering a selected set of mechanical examples.

MSC:

70G45 Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics
Full Text: DOI

References:

[1] Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer-Verlag, Berlin (1989) · Zbl 0692.70003 · doi:10.1007/978-1-4757-2063-1
[2] Bauchau, O.A.: Flexible Multibody Dynamics. Springer Science+Business Media B.V, London (2011) · Zbl 1209.70001 · doi:10.1007/978-94-007-0335-3
[3] Bejancu, A., Farran, H.R.: Foliations and Geometric Structures. Springer, Netherlands (2006) · Zbl 1092.53021
[4] Bloch, A.M.: Nonholonomic Mechanics and Control. Springer-Verlag, New York (2003) · Zbl 1045.70001 · doi:10.1007/b97376
[5] Bowen, R.M., Wang, C.-C.: Introduction to Vectors and Tensors, 2nd edn. Dover Publications, Mineola, New York (2008) · Zbl 1205.15001
[6] Brüls, O., Cardona, A., Arnold, M.: Lie group generalized-\[ \alpha\] α time integration of constrained flexible multibody systems. Mechanism and Machine Theory 48, 121-137 (2012) · doi:10.1016/j.mechmachtheory.2011.07.017
[7] Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems. Springer-Verlag, New York (2005) · Zbl 1066.70002 · doi:10.1007/978-1-4899-7276-7
[8] Casey, J.: Geometrical derivation of Lagrange’s equations for a system of particles. Am. J. Phys. 62, 836-847 (1994) · Zbl 1219.70038 · doi:10.1119/1.17470
[9] Casey, J., O’Reilly, O.M.: Geometrical derivation of Lagrange’s equations for a system of rigid bodies. Math. Mech. Solids 11, 401-422 (2006) · Zbl 1157.70011 · doi:10.1177/1081286505044137
[10] Chetaev, N.G.: Theoretical Mechanics. Mir Publishers, Moscow (1989) · Zbl 0715.70002
[11] Essen, H.: On the geometry of nonholonomic dynamics. ASME J. Appl. Mech. 61, 689-694 (1994) · Zbl 0812.70009 · doi:10.1115/1.2901515
[12] Frankel, T.: The Geometry of Physics: An Introduction. Cambridge University Press, New York (1997) · Zbl 0888.58077
[13] Geradin, M., Cardona, A.: Flexible Multibody Dynamics. John Wiley & Sons, New York (2001) · Zbl 0666.73014
[14] Glocker, C.: Set-Valued Force Laws. Dynamics of Non-Smooth Systems. Springer, Berlin (2001) · Zbl 0979.70001 · doi:10.1007/978-3-540-44479-4
[15] Greenwood, D.T.: Classical Dynamics. Dover Publications, New York (1977)
[16] Lew, A., Marsden, J.E., Ortiz, M., West, M.: Asynchronous variational integrators. Arch. Rational Mech. Anal. 167, 85-146 (2003) · Zbl 1055.74041 · doi:10.1007/s00205-002-0212-y
[17] Lewis, A.D., Murray, R.M.: Variational principles for constrained systems: theory and experiment. Int. J. Non-linear Mech. 30, 793-815 (1995) · Zbl 0864.70008 · doi:10.1016/0020-7462(95)00024-0
[18] Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs, New Jersey (1983) · Zbl 0545.73031
[19] Molino, P.: Riemannian Foliations, Progress in Math. 73, Birkhauser, Boston (1988) · Zbl 0824.53028
[20] Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robot Manipulation. CRC Press, Boca Raton, Florida (1994) · Zbl 0858.70001
[21] Natsiavas, S., Paraskevopoulos, E.: A set of ordinary differential equations of motion for constrained mechanical systems. Nonlinear Dyn. 79, 1911-1938 (2015) · Zbl 1331.70056 · doi:10.1007/s11071-014-1783-5
[22] Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, vol. 33. American Mathematical Society, Providence (1972) · Zbl 0245.70011
[23] O’Reilly, O.M., Srinivasa, A.R.: On a decomposition of generalized constraint forces. Proc. R. Soc. Lond. A 457, 1307-1313 (2001) · Zbl 1009.70012 · doi:10.1098/rspa.2000.0717
[24] Papastavridis, J.G.: Tensor Calculus and Analytical Dynamics. CRC Press, Boca Raton (1999)
[25] Paraskevopoulos, E., Natsiavas, S.: A new look into the kinematics and dynamics of finite rigid body rotations using Lie group theory. Int. J. Solids Struct. 50, 57-72 (2013) · doi:10.1016/j.ijsolstr.2012.09.001
[26] Paraskevopoulos, E., Natsiavas, S.: On application of Newton’s law to mechanical systems with motion constraints. Nonlinear Dyn. 72, 455-475 (2013) · Zbl 1268.53084 · doi:10.1007/s11071-012-0727-1
[27] Paraskevopoulos, E., Natsiavas, S.: Weak formulation and first order form of the equations of motion for a class of constrained mechanical systems. Int. J. Non-linear Mech. 77, 208-222 (2015)
[28] Pars, L.A.: A Treatise on Analytical Dynamics. Heinemann Educational Books, London (1965) · Zbl 0125.12004
[29] Reinhart, B.L.: Differential Geometry of Foliations. Springer, Berlin (1983) · Zbl 0506.53018 · doi:10.1007/978-3-642-69015-0
[30] Rosenberg, R.M.: Analytical Dynamics of Discrete Systems. Plenum Press, New York (1977) · Zbl 0416.70001 · doi:10.1007/978-1-4684-8318-5
[31] Shabanov, S.V.: Constrained systems and analytical mechanics in spaces with torsion. J. Phys. A Math. Gen. 31, 5177-5190 (1998) · Zbl 0968.70015
[32] Simo, J.C., Tarnow, N., Wong, K.K.: Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comp. Meth. Appl. Mech. Eng. 100, 63-116 (1992) · Zbl 0764.73096 · doi:10.1016/0045-7825(92)90115-Z
[33] Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proc. R. Soc. Lond. A 439, 407-410 (1992) · Zbl 0766.70011 · doi:10.1098/rspa.1992.0158
[34] Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics a New Approach. Cambridge University Press, Cambridge (1996) · Zbl 0875.70100 · doi:10.1017/CBO9780511665479
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.