×

High-order central Hermite WENO schemes: dimension-by-dimension moment-based reconstructions. (English) Zbl 1349.65385

Summary: In this paper, a class of high-order central finite volume schemes is proposed for solving one- and two-dimensional hyperbolic conservation laws. Formulated on staggered meshes, the methods involve Hermite WENO (HWENO) spatial reconstructions, and Lax-Wendroff type discretizations or the natural continuous extension of Runge-Kutta methods in time. Differently from the central Hermite WENO methods we developed previously in Tao et al. (2015) [34], the spatial reconstructions, a core ingredient of the methods, are based on the zeroth-order and the first-order moments of the solution, and are implemented through a dimension-by-dimension strategy when the spatial dimension is higher than one. This leads to much simpler implementation of the methods in higher dimension and better cost efficiency. Meanwhile, the proposed methods have the attractive features of the general central Hermite WENO methods such as being compact in reconstruction and requiring neither flux splitting nor numerical fluxes, while being accurate and essentially non-oscillatory. A collection of one- and two-dimensional numerical examples is presented to demonstrate high resolution and robustness of the methods in capturing smooth and non-smooth solutions.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Arminjon, P.; Stanescu, D.; Viallon, M.-C., A two-dimensional finite volume extension of the Lax-Friedrichs and Nessyahu-Tadmor schemes for compressible flow, (Hafez, M.; Oshima, K., Proceedings of the 6th International Symposium on Computational Fluid Dynamics, vol. IV. Proceedings of the 6th International Symposium on Computational Fluid Dynamics, vol. IV, Lake Tahoe, NV (1995)), 7-14
[2] Balsara, D. S.; Altmann, C.; Munz, C.-D.; Dumbser, M., A sub-cell based indicator for troubled zones in RKDG schemes and a novel class of hybrid RKDG+HWENO schemes, J. Comput. Phys., 226, 586-620 (2007) · Zbl 1124.65072
[3] Balsara, D. S.; Shu, C.-W., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys., 160, 405-452 (2000) · Zbl 0961.65078
[4] Bianco, F.; Puppo, G.; Russo, G., High-order central schemes for hyperbolic systems of conservation laws, SIAM J. Sci. Comput., 21, 294-322 (1999) · Zbl 0940.65093
[5] Chavent, G.; Salzano, G., A finite-element method for the 1-D water flooding problem with gravity, J. Comput. Phys., 45, 307-344 (1982) · Zbl 0489.76106
[6] Cockburn, B.; Shu, C.-W., The Runge-Kutta local projection \(P^1\)-discontinuous-Galerkin finite element method for scalar conservation law, RAIRO Modél. Math. Anal. Numér., 25, 337-361 (1991) · Zbl 0732.65094
[7] Cockburn, B.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Math. Comput., 52, 411-435 (1989) · Zbl 0662.65083
[8] Dumbser, M.; Balsara, D. S.; Toro, E. F.; Munz, C.-D., A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes, J. Comput. Phys., 227, 8209-8253 (2008) · Zbl 1147.65075
[9] Friedrichs, O., Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids, J. Comput. Phys., 144, 194-212 (1998) · Zbl 1392.76048
[10] Gottlieb, D.; Lustman, L.; Orszag, S. A., Spectral calculations of one dimensional inviscid flows with shocks, SIAM J. Sci. Stat. Comput., 2, 296-310 (1981) · Zbl 0561.76076
[11] Harten, A.; Engquist, B.; Osher, S.; Chakravathy, S., Uniformly high order accurate essentially non-oscillatory schemes, III, J. Comput. Phys., 71, 231-303 (1987) · Zbl 0652.65067
[12] Hu, C.; Shu, C.-W., Weighted essentially non-oscillatory schemes on triangular meshes, J. Comput. Phys., 150, 97-127 (1999) · Zbl 0926.65090
[13] Hughes, T. J.; Brooks, A., A multidimensional upwind scheme with no crosswind diffusion, (Hughes, T. J., Finite Element Methods for Convection Dominated Flows. Finite Element Methods for Convection Dominated Flows, AMD, vol. 34 (1979), ASME: ASME New York) · Zbl 0423.76067
[14] Hughes, T. J.; Brooks, A., A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure, (Gallagher, R. H., Finite Elements in Fluids, vol. 4 (1982), Wiley: Wiley New York)
[15] Jiang, G.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065
[16] Jiang, G.; Tadmor, E., Nonoscillatory central schemes for multidimensional hyperbolic conservation laws, SIAM J. Sci. Comput., 19, 1892-1917 (1998) · Zbl 0914.65095
[17] Kurganov, A.; Levy, D., A third-order semidiscrete central scheme for conservation laws and convection-diffusion equations, SIAM J. Sci. Comput., 22, 1461-1488 (2000) · Zbl 0979.65077
[18] Lax, P. D.; Wendroff, B., Systems of conservation laws, Commun. Pure Appl. Math., 13, 217-237 (1960) · Zbl 0152.44802
[19] Levy, D.; Puppo, G.; Russo, G., Central WENO schemes for hyperbolic systems of conservation laws, Math. Model. Numer. Anal., 33, 547-571 (1999) · Zbl 0938.65110
[20] Levy, D.; Puppo, G.; Russo, G., A fourth-order central WENO scheme for multidimensional hyperbolic systems of conservation laws, SIAM J. Sci. Comput., 24, 480-506 (2002) · Zbl 1014.65079
[21] Liu, X.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200-212 (1994) · Zbl 0811.65076
[22] Liu, X.; Tadmor, E., Third order nonoscillatory central scheme for hyperbolic conservation laws, Numer. Math., 79, 397-425 (1998) · Zbl 0906.65093
[23] Liu, Y., Central schemes on overlapping cells, J. Comput. Phys., 209, 82-104 (2005) · Zbl 1076.65076
[24] Luo, H.; Xia, Y.; Li, S.; Nourgaliev, R.; Cai, C., A Hermite WENO reconstruction-based discontinuous Galerkin method for the Euler equations on tetrahedral grids, J. Comput. Phys., 231, 5489-5503 (2012) · Zbl 1426.76288
[25] Nessyahu, H.; Tadmor, E., Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87, 408-463 (1990) · Zbl 0697.65068
[26] Qiu, J.; Shu, C.-W., On the construction, comparison, local characteristic decomposition for high order central WENO schemes, J. Comput. Phys., 183, 187-209 (2002) · Zbl 1018.65106
[27] Qiu, J.; Shu, C.-W., Finite difference WENO schemes with Lax-Wendroff type time discretizations, SIAM J. Sci. Comput., 24, 2185-2198 (2003) · Zbl 1034.65073
[28] Qiu, J.; Shu, C.-W., Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one dimensional case, J. Comput. Phys., 193, 115-135 (2004) · Zbl 1039.65068
[29] Qiu, J.; Shu, C.-W., Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: two dimensional case, Comput. Fluids, 34, 642-663 (2005) · Zbl 1134.65358
[30] Shi, J.; Hu, C.; Shu, C.-W., A technique of treating negative weights in WENO schemes, J. Comput. Phys., 175, 108-127 (2002) · Zbl 0992.65094
[31] Shu, C.-W., High order weighted essentially non-oscillatory schemes for convection dominated problems, SIAM Rev., 51, 82-126 (2009) · Zbl 1160.65330
[32] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes II, J. Comput. Phys., 83, 32-78 (1989) · Zbl 0674.65061
[33] Tadmor, E., Convergence of spectral methods for nonlinear conservation laws, SIAM J. Numer. Anal., 26, 30-44 (1989) · Zbl 0667.65079
[34] Tao, Z.; Li, F.; Qiu, J., High-order central Hermite WENO schemes on staggered meshes for hyperbolic conservation laws, J. Comput. Phys., 281, 148-176 (2015) · Zbl 1352.65271
[35] Tao, Z., Study of high-order central HWENO finite volume methods for hyperbolic conservation laws and Hamilton-Jacobi equations (April 2016), Xiamen University: Xiamen University Xiamen, China, Doctoral thesis
[36] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys., 54, 115-173 (1984) · Zbl 0573.76057
[37] Zennaro, M., Natural continuous extensions of Runge-Kutta methods, Math. Comput., 46, 119-133 (1986) · Zbl 0608.65043
[38] Zheng, F.; Qiu, J., Directly solving the Hamilton-Jacobi equations by Hermite WENO schemes, J. Comput. Phys., 307, 423-445 (2016) · Zbl 1354.65179
[39] Zhu, J.; Qiu, J., A class of the fourth order finite volume Hermite weighted essentially non-oscillatory schemes, Sci. China Ser. A: Math., 51, 1549-1560 (2008) · Zbl 1157.65441
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.