×

Single-cone real-space finite difference scheme for the time-dependent Dirac equation. (English) Zbl 1349.65301

J. Comput. Phys. 265, 50-70 (2014); corrigendum ibid. 457, Article ID 111118, 2 p. (2022).
Summary: A finite difference scheme for the numerical treatment of the \((3+1)\)D Dirac equation is presented. Its staggered-grid intertwined discretization treats space and time coordinates on equal footing, thereby avoiding the notorious fermion doubling problem. This explicit scheme operates entirely in real space and leads to optimal linear scaling behavior for the computational effort per space-time grid-point. It allows for an easy and efficient parallelization. A functional for a norm on the grid is identified. It can be interpreted as probability density and is proved to be conserved by the scheme. The single-cone dispersion relation is shown and exact stability conditions are derived. Finally, a single-cone scheme for the two-component \((2+1)\)D Dirac equation, its properties, and a simulation of scattering at a Klein step are presented.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

Software:

Dirac++

References:

[1] Dirac, P. A.M., The quantum theory of the electron, Proc. R. Soc. Lond. A, 117, 610-624 (1928) · JFM 54.0973.01
[2] Sakurai, J. J., Advanced Quantum Mechanics (2006), Pearson Education India
[3] Ryder, L. H., Quantum Field Theory (1996), Cambridge University Press · Zbl 0893.00008
[4] Itzykson, C.; Zuber, J. B., Quantum Field Theory (2005), Dover Publications Inc.: Dover Publications Inc. New York · Zbl 0453.05035
[5] Srednicki, M., Quantum Field Theory (2007), Cambridge University Press · Zbl 1113.81002
[6] Rabi, I. I., Das freie Elektron im homogenen Magnetfeld nach der Diracschen Theorie, Z. Phys., 49, 507-511 (1928) · JFM 54.0975.01
[7] Nikolsky, K., Das Oszillatorproblem nach der Diracschen Theorie, Z. Phys., 62, 677-681 (1930) · JFM 56.0753.01
[8] Wolkow, D. M., Über eine Klasse von Lösungen der Diracschen Gleichung, Z. Phys., 94, 250-260 (1935) · JFM 61.1570.02
[9] Bethe, H. A.; Salpeter, E. E., Quantum Mechanics of One- and Two-Electron Atoms, 63-71 (1977), Plenum Publishing Corporation: Plenum Publishing Corporation New York
[10] Salamin, Y. I.; Hu, S. X.; Hatsagortsyan, K. Z.; Keitel, C. H., Relativistic high-power laser-matter interactions, Phys. Rep., 427, 41-155 (2006), and references therein
[11] Di Piazza, A.; Müller, C.; Hatsagortsyan, K. Z.; Keitel, C. H., Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys., 84, 1177-1228 (2012), and references therein
[12] Mocken, G. R.; Keitel, C. H., FFT-split-operator code for solving the Dirac equation in \(2 + 1\) dimensions, Comput. Phys. Commun., 178, 868-882 (2008) · Zbl 1196.81031
[13] Fillion-Gourdeau, F.; Lorin, E.; Bandrauk, A. D., Numerical solution of the time-dependent Dirac equation in coordinate space without fermion-doubling, Comput. Phys. Commun., 183, 1403-1415 (2012) · Zbl 1295.35363
[14] Neto, A. C.; Guinea, F.; Peres, N. M.R.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene, Rev. Mod. Phys., 81, 109-162 (2009), and references therein
[15] Qi, X. L.; Zhang, S. C., Topological insulators and superconductors, Rev. Mod. Phys., 83, 1057-1110 (2011), and references therein
[16] Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Meier, F.; Dil, J. H.; Osterwalder, J.; Patthey, L.; Fedorov, A. V.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z., Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3, Phys. Rev. Lett., 103, 146401-1-146401-4 (2009)
[17] Hasan, M. Z.; Kane, C. L., Colloquium: Topological insulators, Rev. Mod. Phys., 82, 3045-3067 (2010), and references therein
[18] Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z., Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys., 5, 398-402 (2009)
[19] Analytis, J. G.; Chu, J. H.; Chen, Y.; Corredor, F.; McDonald, R. D.; Shen, Z. X.; Fisher, Ian R., Bulk Fermi surface coexistence with Dirac surface state in Bi2Se3: A comparison of photoemission and Shubnikov-de Haas measurements, Phys. Rev. B, 81, 205407 (2010)
[20] Nielsen, H. B.; Ninomiya, M., A No-Go theorem for regularizing chiral fermions, Phys. Lett. B, 105, 219-223 (1981)
[21] Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag., 14, 302-307 (1966) · Zbl 1155.78304
[22] Taflove, A.; Hagness, S. C., Computational Electrodynamics: The Finite-Difference Time-Domain Method (2005), Artech House: Artech House Norwood
[23] Berenger, J. P., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185-200 (1994) · Zbl 0814.65129
[24] Johnson, S. G., Notes on Perfectly Matched Layers (PMLs) (2008), Massachusetts Institute of Technology: Massachusetts Institute of Technology Massachusetts, Lecture notes
[25] Hammer, R.; Pötz, W.; Arnold, A., A dispersion and norm preserving finite difference scheme with transparent boundary conditions for the Dirac equation in \((1 + 1)\) D, J. Comput. Phys., 256, 728-747 (2014) · Zbl 1349.81085
[26] Hammer, R.; Pötz, W., Staggered-grid leap-frog scheme for the \((2 + 1)\) D Dirac equation, Comput. Phys. Commun., 185, 40-52 (2014) · Zbl 1344.65080
[27] Hammer, R.; Pötz, W., Dynamics of domain-wall Dirac fermions on a topological insulator: A chiral fermion beam splitter, Phys. Rev. B, 88, 235119 (2013)
[28] Hammer, R.; Ertler, C.; Pötz, W., Solitonic Dirac fermion wave guide networks on topological insulator surfaces, Appl. Phys. Lett., 102, 193514 (2013)
[29] Stacey, R., Eliminating lattice fermion doubling, Phys. Rev. D, 26, 468-472 (1982)
[30] Alouges, F.; De Vuyst, F.; Le Coq, G.; Lorin, E., The reservoir technique: A way to make Godunov-type schemes zero or very low diffuse. Application to Colella-Glaz solver, Eur. J. Mech. B, Fluids, 27, 643-664 (2008) · Zbl 1151.76533
[31] Kogut, J.; Susskind, L., Hamilton formulation of Wilson’s lattice gauge theories, Phys. Rev. D, 11, 395-408 (1975)
[32] Ginsparg, P. H.; Wilson, K. G., A remnant of chiral symmetry on the lattice, Phys. Rev. D, 25, 2649-2657 (1982)
[33] Kaplan, D. B., A method for simulating chiral fermions on the lattice, Phys. Lett. B, 288, 342-347 (1992)
[34] Greiner, W., Relativistic Quantum Mechanics: Wave Equations (2000), Springer: Springer Berlin · Zbl 0998.81503
[35] Borzì, A.; Decker, E., Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation, J. Comput. Appl. Math., 193, 65-88 (2006) · Zbl 1118.65107
[36] Strikwerda, J. C., Finite Difference Schemes and Partial Differential Equations (2004), SIAM: SIAM Philadelphia · Zbl 1071.65118
[37] Peierls, R., Zur Theorie des Diamagnetismus von Leitungselektronen, Z. Phys., 80, 763-791 (1933) · Zbl 0006.19204
[38] Graf, M.; Vogl, P., Electromagnetic fields and dielectric response in empirical tight-binding theory, Phys. Rev. B, 51, 4940-4949 (1995), and references therein
[39] Xu, J.; Shao, S.; Tang, H., Numerical methods for the non-linear Dirac equation, J. Comput. Phys., 245, 131-149 (2013) · Zbl 1349.65351
[40] Hammer, R. (Dec. 2013), unpublished
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.