×

A semi-analytical approach to molecular dynamics. (English) Zbl 1349.65206

Summary: Despite numerous computational advances over the last few decades, molecular dynamics still favors explicit (and thus easily-parallelizable) time integrators for large scale numerical simulation. As a consequence, computational efficiency in solving its typically stiff oscillatory equations of motion is hampered by stringent stability requirements on the time step size. In this paper, we present a semi-analytical integration scheme that offers a total speedup of a factor 30 compared to the Verlet method on typical MD simulation by allowing over three orders of magnitude larger step sizes. By efficiently approximating the exact integration of the strong (harmonic) forces of covalent bonds through matrix functions, far improved stability with respect to time step size is achieved without sacrificing the explicit, symplectic, time-reversible, or fine-grained parallelizable nature of the integration scheme. We demonstrate the efficiency and scalability of our integrator on simulations ranging from DNA strand unbinding and protein folding to nanotube resonators.

MSC:

65L04 Numerical methods for stiff equations
Full Text: DOI

References:

[1] Abell, G. C., Empirical chemical pseudopotential theory of molecular and metallic bonding, Phys. Rev. B, 31, 6184-6196 (1985)
[2] Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P., Molecular Biology of the Cell: Reference Edition, vol. 1 (2009), Garland Science
[3] AMBER molecular mechanical force fields (May 2014)
[4] Andersen, H. C., Rattle: a velocity version of the Shake algorithm for molecular dynamics calculations, J. Comput. Phys., 52, 24-34 (1983) · Zbl 0513.65052
[5] Arnoldi, W. E., The principle of minimized iterations in the solution of the matrix eigenvalue problem, Q. Appl. Math., 9, 17-29 (1951) · Zbl 0042.12801
[6] Belytschko, T.; Glaum, L. W., Applications of higher order corotational stretch theories to nonlinear finite element analysis, Comput. Struct., 10, 1-2, 175-182 (1979) · Zbl 0393.73085
[7] Brenner, D. W., Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B, 42, 9458-9471 (1990)
[8] Brenner, D. W.; Shenderova, O. A.; Harrison, J. A.; Stuart, S. J.; Ni, B.; Sinnott, S. B., A second-generation reactive empirical bond order (rebo) potential energy expression for hydrocarbons, J. Phys. Condens. Matter, 14, 4, 783-802 (2002)
[9] Certaine, J., The solution of ordinary differential equations with large time constants, (Ralston, A.; Wilf, H., Mathematical Methods for Digital Computers (1960), Wiley), 128-132
[10] Curtiss, C. F.; Hirschfelder, J. O., Integration of Stiff equations, Proc. Natl. Acad. Sci. USA, 38, 3, 235-243 (1952) · Zbl 0046.13602
[11] Deuflhard, P., A study of extrapolation methods based on multistep schemes without parasitic solutions, J. Appl. Math. Phys., 30, 177-189 (1979) · Zbl 0406.70012
[12] Dirac, P. A., Note on exchange phenomena in the Thomas atom, Math. Proc. Camb. Philos. Soc., 26, 376-385 (1930) · JFM 56.0751.04
[13] Eastman, P.; Pande, V. S., Constant constraint matrix approximation: a robust, parallelizable constraint method for molecular simulations, J. Chem. Theory Comput., 6, 2, 434-437 (2010)
[14] Friedli, A., Verallgemeinerte Runge-Kutta Verfahren zur Lösung steifer Differentialgleichungen, Lect. Notes Math., 631, 214-219 (1978)
[15] García-Archilla, B.; Sanz-Serna, J. M.; Skeel, R. D., Long-time-step methods for oscillatory differential equations, SIAM J. Sci. Comput., 20, 930-963 (1999) · Zbl 0927.65143
[16] Gautschi, W., Numerical integration of ordinary differential equations based on trigonometric polynomials, Numer. Math., 3, 381-397 (1961) · Zbl 0163.39002
[17] Gershgorin, S. A., Über die Abgrenzung der Eigenwerte einer Matrix, Bull. Acad. Sci. URSS, Cl. Sci. Math. Nat., 6, 749-754 (1931) · JFM 57.1340.06
[18] Greengard, L.; Rokhlin, V., A fast algorithm for particle simulations, J. Comput. Phys., 73, 2, 325-348 (1987) · Zbl 0629.65005
[19] Griebel, M.; Knapek, S.; Zumbusch, G., Numerical Simulation in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications (2007), Springer · Zbl 1131.76001
[20] Güttel, S., Rational Krylov approximation of matrix functions: numerical methods and optimal pole selection, GAMM-Mitt., 36, 1, 8-31 (2013) · Zbl 1292.65043
[21] Hairer, E.; Lubich, C., Long-time energy conservation of numerical methods for oscillatory differential equations, SIAM J. Numer. Anal., 38, 2, 414-441 (2000) · Zbl 0988.65118
[22] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, vol. 31 (2006), Springer · Zbl 1094.65125
[23] Hall, G. G.; Lennard-Jones, J. E., The molecular orbital theory of chemical valency. III. Properties of molecular orbitals, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 202, 1069, 155-165 (1950) · Zbl 0040.28301
[24] Hersch, J., Contribution à la méthode des équations aux différences, Z. Angew. Math. Phys., 9, 129-180 (1958) · Zbl 0084.11401
[25] Hess, B.; Bekker, H.; Berendsen, H. J.C.; Fraaije, J. G.E. M., Lincs: a linear constraint solver for molecular simulations, J. Comput. Chem., 18, 12, 1463-1472 (1997)
[26] Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E., Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory Comput., 4, 3, 435-447 (2008)
[27] Hochbruck, M.; Lubich, C., On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 34, 5, 1911-1925 (1997) · Zbl 0888.65032
[28] Hochbruck, M.; Lubich, C., A bunch of time integrators for quantum/classical molecular dynamics, (Deuflhard, P.; Hermans, J.; Leimkuhler, B.; Mark, A.; Reich, S.; Skeel, R. D., Algorithms for Macromolecular Modelling (1999), Springer), 421-432 · Zbl 0966.81066
[29] Hochbruck, M.; Lubich, C., Exponential integrators for quantum-classical molecular dynamics, BIT Numer. Math., 39, 4, 620-645 (1999) · Zbl 0985.81002
[30] Hochbruck, M.; Lubich, C.; Selfhofer, H., Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput., 19, 5, 1552-1574 (1998) · Zbl 0912.65058
[31] Jensen, K.; Kim, K.; Zettl, A., An atomic-resolution nanomechanical mass sensor, Nat. Nanotechnol., 3, 9, 533-537 (2008)
[32] Kloeden, P. E.; Platen, E., Numerical Solution of Stochastic Differential Equations, Stochastic Modelling and Applied Probability, vol. 23 (1993), Springer · Zbl 0701.60054
[33] Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E., \(C_{60}\): buckminsterfullerene, Nature, 318, 6042, 162-163 (1985)
[34] Kulkarni, Y., Coarse-graining of atomistic description at finite temperature (2006), California Institute of Technology, PhD thesis
[35] Lagrange, J.-L., Supplément au Mémoire sur la théorie générale de la variation des constantes arbitraires, dans tous les problèmes de la mécanique, Mém. Cl. Sci., Math. Phys. (1809)
[36] LAMMPS molecular dynamics simulator (May 2014)
[37] Lawson, J. D., Generalized Runge-Kutta processes for stable systems with large Lipschitz constants, SIAM J. Numer. Anal., 4, 3, 372-380 (1967) · Zbl 0223.65030
[38] Lennard-Jones, J. E., On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 106, 738, 441-462 (1924)
[39] Lennard-Jones, J. E., On the determination of molecular fields. II. From the equation of state of a gas, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 106, 738, 463-477 (1924)
[40] Marx, D.; Hutter, J., Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (2009), Cambridge University Press
[41] Matteoli, E.; Mansoori, G. A., A simple expression for radial distribution functions of pure fluids and mixtures, J. Chem. Phys., 103, 11, 4672-4677 (1995)
[42] Maxwell, J. C., Illustrations of the dynamical theory of gases, Philos. Mag., 19, 19-32 (1860)
[43] Maxwell, J. C., Illustrations of the dynamical theory of gases, Philos. Mag., 20, 21-37 (1860)
[44] Mises, R.; Pollaczek-Geiringer, H., Praktische Verfahren der Gleichungsauflösung, Z. Angew. Math. Mech., 9, 152-164 (1929) · JFM 55.0305.01
[45] Moler, C.; Loan, C. V., Nineteen dubious ways to compute the exponential of a matrix, SIAM Rev., 20, 4, 801-836 (1978) · Zbl 0395.65012
[46] Moler, C.; Loan, C. V., Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev., 45, 1, 3-49 (2003) · Zbl 1030.65029
[47] Müller, M.; Dorsey, J.; McMillan, L.; Jagnow, R.; Cutler, B., Stable real-time deformations, (Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’02 (2002), ACM: ACM New York, NY, USA), 49-54
[48] Neidigh, J. W.; Fesinmeyer, R. M.; Andersen, N. H., Designing a 20-residue protein, Nat. Struct. Mol. Biol., 9, 6, 425-430 (2002)
[49] Rapaport, D. C., The Art of Molecular Dynamics Simulation (1996), Cambridge University Press · Zbl 1098.81009
[50] Rosenbrock, H. H., Some general implicit processes for the numerical solution of differential equations, Comput. J., 5, 4, 329-330 (1963) · Zbl 0112.07805
[51] Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J.C., Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of \(n\)-alkanes, J. Comput. Phys., 23, 3, 327-341 (1977)
[52] Saad, Y., Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 29, 209-228 (1992) · Zbl 0749.65030
[53] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), SIAM · Zbl 1002.65042
[54] Sidje, R. B., Expokit: a software package for computing matrix exponentials, ACM Trans. Math. Softw., 24, 1, 130-156 (1998) · Zbl 0917.65063
[55] Skeel, R., Integration schemes for molecular dynamics and related applications, (Ainsworth, M.; Levesley, J.; Marletta, M., The Graduate Student’s Guide to Numerical Analysis. The Graduate Student’s Guide to Numerical Analysis, Springer Series in Computational Mathematics, vol. 26 (1999), Springer: Springer Berlin, Heidelberg), 119-176 · Zbl 0938.65150
[56] Tao, M.; Owhadi, H.; Marsden, J. E., Nonintrusive and structure preserving multiscale integration of stiff odes, sdes, and Hamiltonian systems with hidden slow dynamics via flow averaging, Multiscale Model. Simul., 8, 4, 1269-1324 (2010) · Zbl 1215.65187
[57] Tersoff, J., New empirical approach for the structure and energy of covalent systems, Phys. Rev. B, 37, 6991-7000 (1988)
[58] Vaidehi, N.; Jain, A.; Goddard, W. A., Constant temperature constrained molecular dynamics: the Newton-Euler inverse mass operator method, J. Phys. Chem., 100, 25, 10508-10517 (1996)
[59] Van der Vorst, H. A., An iterative solution method for solving \(f(A) x = b\), using Krylov subspace information obtained for the symmetric positive definite matrix \(A\), J. Comput. Appl. Math., 18, 2, 249-263 (1987) · Zbl 0621.65022
[60] Verlet, L., Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev., 159, 98-103 (1967)
[61] Wempner, G. A., Finite elements, finite rotations and small strains of flexible shells, Int. J. Solids Struct., 5, 2, 117-153 (1969) · Zbl 0164.26505
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.