×

Maximum modulus principle estimates for one dimensional fractional diffusion equation. (English) Zbl 1349.35417

Summary: We present scheme I for solving one-dimensional fractional diffusion equation with variable coefficients based on the maximum modulus principle and two Grunwald approximations. Scheme II is obtained by using classic Crank-Nicolson approximations in order to improve the time convergence. The two schemes are proved to be unconditionally stable and second-order accuracy in spatial grid size for the problem with order of fractional derivative belonging to \([(\sqrt{17} - 1)/2, 2]\) using the maximum modulus principle. A numerical example is given to confirm the theoretical analysis result.

MSC:

35R11 Fractional partial differential equations
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] B Anh, F Liu, I Turner, P Zhuang. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J Numer Anal, 2008, 46(2): 1079–1095. · Zbl 1173.26006 · doi:10.1137/060673114
[2] B Baeumer, D A Benson, M M Meerschaert, R Schumer. Multiscaling fractional advectiondispersion equations and their solutions, Water Resour Res, 2003, 39: 1022–1032.
[3] B Baeumer, D A Benson, M M Meerschaert, S W Wheatcraft. Subordinated advection-dispersion equation for contaminant transport, Water Resour Res, 2001, 37: 1543–1550. · doi:10.1029/2000WR900409
[4] E Barkai, J Klafter, R Metzler. From continuous time random walks to the fractional Fokker-Planck equation, Phys Rev E, 2000, 61: 132–138. · doi:10.1103/PhysRevE.61.132
[5] L Bengtsson, V P Singh, Z Deng. Numerical solution of fractional advection-dispersion equation, J Hydraul Eng, 2004, 130: 422–431. · doi:10.1061/(ASCE)0733-9429(2004)130:5(422)
[6] D A Benson, M M Meerschaert, R Schumer, S W Wheatcraft. Eulerian derivation of the fractional advection-dispersion equation, J Contam Hydrol, 2001, 48: 69–88. · doi:10.1016/S0169-7722(00)00170-4
[7] D Benson, M M Meerschaert, S Wheatcraft. The fractional-order governing equation of Levy motions, Water Resour Res, 2000, 36: 1413–1424. · doi:10.1029/2000WR900032
[8] A Blumen, I M Sokolov, J Klafter. Fractional kinetics, Phys Today, 2002, 55: 28–53.
[9] B A Carreras, D Del-Castillo-Negrete, H R Hicks, K M, Ferreria-Mejias, V E Lynch. Numerical methods for the solution of partial differential equations of fractional order, J Comput Phys, 2003, 192: 406–421. · Zbl 1047.76075 · doi:10.1016/j.jcp.2003.07.008
[10] A Chaves. Fractional diffusion equation to describe Levy flights, Phys Lett A, 1998, 239: 13–16. · Zbl 1026.82524 · doi:10.1016/S0375-9601(97)00947-X
[11] C M Chen, F Liu, K Burrage. Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation, Appl Math Comput, 2008, 198: 754–769. · Zbl 1144.65057 · doi:10.1016/j.amc.2007.09.020
[12] C M Chen, F Liu, I Turner, V Anh. A Fourier method for the fractional diffusion equation describing sub-diffusion, J Comput Phys, 2007, 227: 886–897. · Zbl 1165.65053 · doi:10.1016/j.jcp.2007.05.012
[13] J Dudley, L Sabatelli, P Richmond, S Keating. Waiting time distributions in financial markets, Eur Phys J B, 2002, 27: 273–275.
[14] R Hilfer. Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. · Zbl 0998.26002
[15] E Issacson, H B Keller. Analysis of Numerical Mehtods, Wiley, New York, 1966.
[16] A Kilbas, S Samko, O Marichev. Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Switzerland, 1993. · Zbl 0818.26003
[17] F Liu, V Ahn. Numerical solution of the space fractional Fokker-Planck equation, J Comput Appl Math, 2004, 166: 209–219. · Zbl 1036.82019 · doi:10.1016/j.cam.2003.09.028
[18] C Neal, J W Kirchner, X Feng. Fractal stream chimistry and its implications for contaminant transport in catchments, Nature, 2000, 403: 524–526. · doi:10.1038/35000537
[19] I Podlubny. Fractional Differential Equations, Academic Press, New York, 1999. · Zbl 0924.34008
[20] A Reorges, J P Bouchaud. Anomalous diffusion in disordered media-statistical mechanisms, models and physical applications, Phys Rep, 1990, 195: 127–293.
[21] B Ross, K Miller. An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993. · Zbl 0789.26002
[22] E Scalas, F Mainardi, R Gorenflo. Fractional calculus and continuous-time finance, Phys A, 2000, 284: 376–384. · doi:10.1016/S0378-4371(00)00255-7
[23] E Scalas, F Mainardi, M Raberto. Waiting-times and returns in high-frequency financal data: an empirical study, Phys A, 2001, 314: 749–755. · Zbl 1001.91033
[24] C Tadjeran, M Meerschaert. Finite difference approximations for fractional advection-dispersion flow equation, J Comput Appl Math, 2004, 172: 65–77. · Zbl 1126.76346 · doi:10.1016/j.cam.2004.01.033
[25] C Tadjeran, M Meerschaert. Finite difference approximations for two-sided space-fractional partial differcntial equations, J Comput Appl Math, 2006, 56: 80–90. · Zbl 1086.65087
[26] M Y Xu, W C Tan. Theoretical analysis of the velocity field and vortex sheet of generalized second order fluid with fractional anomalous diffusion, Sci China Ser A, 2001, 44: 1387–1399. · Zbl 1138.76320 · doi:10.1007/BF02877067
[27] C Yang, F Liu, K Burrage. Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term, J Comput Appl Math, 2009, 231: 160–176. · Zbl 1170.65107 · doi:10.1016/j.cam.2009.02.013
[28] G Zaslavsky. Fractional kinetic equation for Hamiltonian Chaotic advection, tracer dynamics and turbulent dispersion, Phys D, 1994, 76: 110–122. · Zbl 1194.37163 · doi:10.1016/0167-2789(94)90254-2
[29] H Zhou, W H Deng, W Y Tian. A class of second order difference approximation for solving space fractional diffusion equations, Math Comput, 2015, 84: 1703–1727. · Zbl 1318.65058 · doi:10.1090/S0025-5718-2015-02917-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.