×

The Noether number of the non-abelian group of order \(3p\). (English) Zbl 1349.13013

Summary: It is proven that for any representation over a field of characteristic \(0\) of the non-abelian semidirect product of a cyclic group of prime order \(p\) and the group of order \(3\) the corresponding algebra of polynomial invariants is generated by elements of degree at most \(p + 2\). We also determine the exact universal degree bound for separating systems of polynomial invariants of this group in characteristic not dividing \(3p\).

MSC:

13A50 Actions of groups on commutative rings; invariant theory
11B75 Other combinatorial number theory
13A02 Graded rings

References:

[1] E. Balandraud, An addition theorem and maximal zero-sum free sets in \[\mathbb{Z}/p\mathbb{Z}\] Z/pZ. Isr. J. Math. 188, 405-429 (2012) · Zbl 1287.11013 · doi:10.1007/s11856-011-0171-9
[2] D.J. Benson, Polynomial Invariants of Finite Groups (Cambridge University Press, Cambridge, 1993) · Zbl 0864.13001 · doi:10.1017/CBO9780511565809
[3] K. Cziszter, M. Domokos, Groups with large Noether bound. arXiv:1105.0679v4 · Zbl 1314.13012
[4] K. Cziszter, M. Domokos, Noether’s bound for the groups with a cyclic subgroup of index two. J. Algebra 399, 546-560 (2014) · Zbl 1307.13009
[5] K. Cziszter, M. Domokos, On the generalized Davenport constant and the Noether number. Cent. Eur. J. Math 11(9), 1605-1615 (2013) · Zbl 1282.13012
[6] H. Derksen, G. Kemper, Computational Invariant Theory (Springer, Berlin, 2002) · Zbl 1011.13003 · doi:10.1007/978-3-662-04958-7
[7] M. Domokos, Typical separating invariants. Transform. Groups 12, 49-63 (2007) · Zbl 1192.13006 · doi:10.1007/s00031-005-1131-4
[8] M. Domokos, P. Hegedűs, Noether’s bound for polynomial invariants of finite groups. Arch. Math. 74, 161-167 (2000) · Zbl 0967.13004 · doi:10.1007/s000130050426
[9] M. Domokos, E. Szabó, Helly dimension of algebraic groups. J. Lond. Math. Soc. II. Ser. 84, 19-34 (2011) · Zbl 1231.13006 · doi:10.1112/jlms/jdq101
[10] J. Draisma, G. Kemper, D. Wehlau, Polarization of separating invariants. Can. J. Math. 60(3), 556-571 (2008) · Zbl 1143.13008 · doi:10.4153/CJM-2008-027-2
[11] E. Dufresne, J. Elmer, M. Kohls, The Cohen-Macaulay property of separating invariants of finite groups. Transform. Groups 14, 771-785 (2009) · Zbl 1184.13019 · doi:10.1007/s00031-009-9072-y
[12] P. Fleischmann, The Noether bound in invariant theory of finite groups. Adv. Math. 156, 23-32 (2000) · Zbl 0973.13003 · doi:10.1006/aima.2000.1952
[13] J. Fogarty, On Noether’s bound for polynomial invariants of a finite group. Electron. Res. Announc. Am. Math. Soc. 7, 5-7 (2001) · Zbl 0980.13003 · doi:10.1090/S1079-6762-01-00088-9
[14] M. Freeze, W.W. Smith, Sumsets of zerofree sequences. Arab. J. Sci. Eng. Sect. C 26, 97-105 (2001) · Zbl 1271.11096
[15] W. Gao, A. Geroldinger, Zero-sum problems in finite abelian groups: a survey. Expo. Math. 24, 337-369 (2006) · Zbl 1122.11013 · doi:10.1016/j.exmath.2006.07.002
[16] A. Geroldinger, F. Halter-Koch, Non-unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Monographs and Textbooks in Pure and Applied Mathematics (Chapman & Hall/CRC, Boca Raton, 2006) · Zbl 1113.11002
[17] F.D. Grosshans, Vector invariants in arbitrary characteristic. Transform. Groups 12, 499-514 (2007) · Zbl 1148.13002 · doi:10.1007/s00031-006-0046-z
[18] M. Kohls, H. Kraft, Degree bounds for separating invariants. Math. Res. Lett. 17, 1171-1182 (2010) · Zbl 1230.13010 · doi:10.4310/MRL.2010.v17.n6.a15
[19] M. Losik, P.W. Michor, V.L. Popov, On polarizations in invariant theory. J. Algebra 301, 406-424 (2006) · Zbl 1099.13012 · doi:10.1016/j.jalgebra.2005.07.008
[20] M.D. Neusel, M. Sezer, Separating invariants of modular p-groups and groups acting diagonally. Math. Res. Lett. 16, 1029-1036 (2009) · Zbl 1194.13004 · doi:10.4310/MRL.2009.v16.n6.a11
[21] E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen. Math. Ann. 77, 89-92 (1916) · JFM 45.0198.01 · doi:10.1007/BF01456821
[22] V.M. Pawale, Invariants of semidirect products of cyclic groups. Ph.D. Thesis, Brandeis University (1999)
[23] B.J. Schmid, Finite groups and invariant theory. in Topics in Invariant Theory. Lecturer Notes in Mathematics, ed. by M.-P. Malliavin. vol. 1478 (Springer, Berlin 1991), pp. 35-66 · Zbl 0770.20004
[24] M. Sezer, Sharpening the generalized Noether bound in the invariant theory of finite groups. J. Algebra 254, 252-263 (2002) · Zbl 1058.13005 · doi:10.1016/S0021-8693(02)00018-2
[25] T. Tao, V. Vu, Additive Combinatorics, Number 105 in Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 2006) · Zbl 1127.11002 · doi:10.1017/CBO9780511755149
[26] D.L. Wehlau, The Noether number in invariant theory. Comptes Rendus Math. Rep. Acad. Sci. Can. 28(2), 39-62 (2006) · Zbl 1108.13008
[27] H. Weyl, The Classical Groups, Their Invariants and Representations, Princeton Mathematical Series, vol. 1 (Princeton University Press, Princeton, 1946) · Zbl 1024.20502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.