×

Negative index Jacobi forms and quantum modular forms. (English) Zbl 1349.11085

Summary: We consider the Fourier coefficients of a special class of meromorphic Jacobi forms of negative index considered by V. G. Kac and M. Wakimoto [Prog. Math. 123, 415–456 (1994; Zbl 0854.17028)]. Much recent work has been done on such coefficients in the case of Jacobi forms of positive index, but almost nothing is known for Jacobi forms of negative index. In this paper we show, from two different perspectives, that their Fourier coefficients have a simple decomposition in terms of partial theta functions. The first perspective uses the language of Lie super algebras, and the second applies the theory of elliptic functions. In particular, we find a new infinite family of rank-crank type partial differential equations generalizing the famous example of A. O. L. Atkin and F. G. Garvan [Ramanujan J. 7, No. 1–3, 343–366 (2003; Zbl 1039.11069)]. We then describe the modularity properties of these coefficients, showing that they are ‘mixed partial theta functions’, along the way determining a new class of quantum modular partial theta functions which is of independent interest. In particular, we settle the final cases of a question of Kac concerning modularity properties of Fourier coefficients of certain Jacobi forms.

MSC:

11F03 Modular and automorphic functions
11F22 Relationship to Lie algebras and finite simple groups
11F37 Forms of half-integer weight; nonholomorphic modular forms
11F50 Jacobi forms

References:

[1] Eichler M, Zagier D: The theory of Jacobi forms. Progress in Mathematics 55, Birkhäuser Boston, Inc., Boston; 1985. · Zbl 0554.10018
[2] Bringmann, K, Folsom, A: Almost harmonic Maass forms and Kac-Wakimoto characters. J. für die Reine und Angewandte Mathematik (Crelle’s Journal), arXiv:1112.4726 [math.NT]
[3] Dabholkar, A, Murthy, S, Zagier, D: Quantum black holes, wall crossing, and mock modular forms. arXiv:1208.4074 [hep-th]
[4] Folsom A: Kac-Wakimoto characters and universal mock theta functions. Trans. Am. Math. Soc 2011,363(1):439–455. 10.1090/S0002-9947-2010-05181-5 · Zbl 1261.11040 · doi:10.1090/S0002-9947-2010-05181-5
[5] Olivetto, R: On the Fourier coefficients of meromorphic Jacobi forms. Int. J. Number. Theor. arXiv:1210.7926 [math.NT] · Zbl 1315.11030
[6] Zwegers, S: Mock Theta Functions. PhD thesis, Utrecht (2002). · Zbl 1194.11058
[7] Andrews G, Garvan F: Dyson’s crank of a partition. Bull. Amer. Math. Soc. (N.S.) 1988,18(2):167–171. 10.1090/S0273-0979-1988-15637-6 · Zbl 0646.10008 · doi:10.1090/S0273-0979-1988-15637-6
[8] Dyson F: Some guesses in the theory of partitions. Eureka (Cambridge) 1944, 8: 10–15.
[9] Atkin A, Garvan F: Relations between the ranks and cranks of partitions. Ramanujan J 2003,7(1–3):343–366. 10.1023/A:1026219901284 · Zbl 1039.11069 · doi:10.1023/A:1026219901284
[10] Bringmann K, Zwegers S: Rank-crank type PDEs and non-holomorphic Jacobi forms. Math. Res. Lett 2010, 17: 589–600. 10.4310/MRL.2010.v17.n4.a1 · Zbl 1253.11093 · doi:10.4310/MRL.2010.v17.n4.a1
[11] Kac V, Wakimoto M: Integrable highest weight modules over affine superalgebras and Appell’s function. Comm. Math. Phys 2001,215(3):631–682. 10.1007/s002200000315 · Zbl 0980.17002 · doi:10.1007/s002200000315
[12] Adamović D, Perše O: Fusion rules and complete reducibility of certain modules for affine Lie algebras. J. Algebra Appl 2014, 13: 1,1350062. · Zbl 1281.17024 · doi:10.1142/S021949881350062X
[13] Kac V, Wakimoto M: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc. Natl. Acad. Sci. U. S. A 1988, 85: 4956–4960. 10.1073/pnas.85.14.4956 · Zbl 0652.17010 · doi:10.1073/pnas.85.14.4956
[14] Creutzig T, Ridout D: Modular data and Verlinde formulae for fractional level WZW models I. Nucl. Phys. B 2012,865(1):83–114. 10.1016/j.nuclphysb.2012.07.018 · Zbl 1262.81157 · doi:10.1016/j.nuclphysb.2012.07.018
[15] Creutzig T, Ridout D: Modular data and Verlinde formulae for fractional level WZW models II. Nucl. Phys. B 2013,875(2):423–458. 10.1016/j.nuclphysb.2013.07.008 · Zbl 1282.81158 · doi:10.1016/j.nuclphysb.2013.07.008
[16] Kac, V, Wakimoto, M: Integrable highest weight modules over affine superalgebras and number theory. In: Lie Theory and Geometry. Progress in Mathematics, pp. 415–456. Birkhäuser Boston, Boston MA (1994). · Zbl 0854.17028
[17] Manschot J, Moore G: A modern fareytail. Commun. Number Theory Phys 2010,4(1):103–159. 10.4310/CNTP.2010.v4.n1.a3 · Zbl 1259.58005 · doi:10.4310/CNTP.2010.v4.n1.a3
[18] Manschot J: Stability and duality in N=2 supergravity. Comm. Math. Phys 2010,299(3):651–676. 10.1007/s00220-010-1104-x · Zbl 1201.83045 · doi:10.1007/s00220-010-1104-x
[19] Dabholkar A, Gaiotto D, Nampuri S: Comments on the spectrum of CHL dyons. J. High Energy Phys 2008, 1: 023. 10.1088/1126-6708/2008/01/023 · doi:10.1088/1126-6708/2008/01/023
[20] Sen, A: Negative discriminant states in N=4 supersymmetric string theories. J. High Energy Phys. 073(10), 1–29 (2011). · Zbl 1303.81183
[21] Zagier, D: Quantum modular forms. Clay Math. Proc. 11 (2010). Amer. Math. Soc., Providence. · Zbl 1294.11084
[22] Byrson J, Ono K, Pitman S, Rhoades R: Unimodal sequences and quantum and mock modular forms. Proc. Natl. Acad. Sci 2012,109(40):3–16067. · doi:10.1073/pnas.1117710109
[23] Folsom A, Ono K, Rhoades R: Mock theta functions and quantum modular forms. Forum Math. Pi 2013,1(e2):1–27. · Zbl 1294.11083 · doi:10.1017/fmp.2013.3
[24] Li, Y, Ngo, H, Rhoades, R: Renormalization and quantum modular forms, part II: mock theta functions. arXiv:1311.3044 [math.NT]
[25] Andrews G: Concave and convex compositions. Ramanujan J 2013,31(1–2):67–82. 10.1007/s11139-012-9394-6 · Zbl 1325.05025 · doi:10.1007/s11139-012-9394-6
[26] Kim, B, Lovejoy, J: Ramanujan-type partial theta identities and rank differences for special unimodal sequences. Ann. Comb. to appear. · Zbl 1326.05008
[27] Stanley, R: Enumerative Combinatorics, Vol. 1. Cambridge University Press, Cambridge (1997). Cambridge Studies in Advanced Mathematics 49:xiv+626.
[28] Wright E: Stacks. Q. J. Math. Oxford Ser 1968,19(2):313–320. 10.1093/qmath/19.1.313 · Zbl 0253.05007 · doi:10.1093/qmath/19.1.313
[29] Ebeling, W: Lattices and Codes. A course partially based on lectures by F. Hirzebruch, Advanced Lectures in Mathematics, Friedr. Vieweg and Sohn, Braunschweig (2002). · Zbl 1030.11030
[30] Creutzig, T, Milas, A: False theta functions and the Verlinde formula. arXiv:1309.6037 [math.QA] · Zbl 1293.81037
[31] Atkin A, Swinnerton-Dyer P: Some properties of partitions. Proc. London Math. Soc 1954,4(3):84–106. 10.1112/plms/s3-4.1.84 · Zbl 0055.03805 · doi:10.1112/plms/s3-4.1.84
[32] Zwegers S: Rank-crank type PDE’s for higher level Appell functions. Acta Arith 2010,144(3):263–273. 10.4064/aa144-3-4 · Zbl 1253.11094 · doi:10.4064/aa144-3-4
[33] Chan S, Dixit A, Garvan F: Rank-crank-type PDEs and generalized Lambert series identities. Ramanujan J 2013,31(1–2):163–189. 10.1007/s11139-012-9373-y · Zbl 1328.11053 · doi:10.1007/s11139-012-9373-y
[34] Lawrence R, Zagier D: Modular forms and quantum invariants of 3-manifolds. Asian J. Math 1999,3(1):93–107. · Zbl 1024.11028 · doi:10.4310/AJM.1999.v3.n1.a5
[35] Zagier D: Vassiliev invariants and a strange identity related to the Dedekind eta-function. Topology 2001,40(5):945–960. 10.1016/S0040-9383(00)00005-7 · Zbl 0989.57009 · doi:10.1016/S0040-9383(00)00005-7
[36] Warnaar O: Partial theta functions. I. Beyond the lost notebook. Proc. London Math. Soc 2003, 87: 363–395. 10.1112/S002461150201403X · Zbl 1089.05009 · doi:10.1112/S002461150201403X
[37] Zagier D: The Mellin transform and other related analytic techniques. Appendix to E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics. A Bridge Between Mathematicians and Physicists. Springer, Berlin-Heidelberg-New York; 2006.
[38] Humphreys J: Introduction to Lie algebras and representation theory. Graduate Texts Mathematics 9. Springer, New York-Berlin; 1978. · Zbl 0447.17001
[39] Weyl H: Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen. I. Mathematische Zeitschrift 1925, 23: 271–309. 10.1007/BF01506234 · JFM 51.0319.01 · doi:10.1007/BF01506234
[40] Rademacher H: Topics in analytic number theory. Die Grundlehren der math. Wiss., Band 169. Springer, Berlin; 1973.
[41] Shimura G: On modular forms of half integral weight. Ann. Math 1973,97(2):440–481. 10.2307/1970831 · Zbl 0266.10022 · doi:10.2307/1970831
[42] Kaneko, M, Zagier, D: A generalized Jacobi theta function and quasimodular forms. In: Dijkgraaf, R., Faber, C., Geer, G. v. d. (eds.)The Moduli Spaces of Curves, Progress in Mathematics, Vol. 129, pp. 165–172. Birkhäuser, Boston (1995). · Zbl 0892.11015
[43] Wall, H: Analytic theory of continued fractions, Chelsea, Bronx (1967).
[44] Hetyei G: Meixner polynomials of the second kind and quantum algebras representing su(1,1). Proc. R. Soc 2010, 466: 1409–1428. 10.1098/rspa.2009.0497 · Zbl 1307.33005 · doi:10.1098/rspa.2009.0497
[45] Alladi K: Partial theta identities of Ramnaujan, Andrews, and Rogers-Fine involving the squares. In Proc. Legacy of Ramanujan, RMS-Lecture Notes Series no. 20 . Ramanujan Mathematical Society, India; 2013. · Zbl 1316.05005
[46] Andrews G, Jimenez-Urroz J, Ono K: q -series identities and values of certain L -functions. Duke Math. J 2001,108(3):395–419. 10.1215/S0012-7094-01-10831-4 · Zbl 1005.11048 · doi:10.1215/S0012-7094-01-10831-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.