×

A unified mixed-integer programming model for simultaneous fluence weight and aperture optimization in VMAT, tomotherapy, and cyberknife. (English) Zbl 1348.90480

Summary: In this paper, we propose and study a unified mixed-integer programming model that simultaneously optimizes fluence weights and multi-leaf collimator (MLC) apertures in the treatment planning optimization of VMAT, Tomotherapy, and CyberKnife. The contribution of our model is threefold: (i) Our model optimizes the fluence and MLC apertures simultaneously for a given set of control points. (ii) Our model can incorporate all volume limits or dose upper bounds for organs at risk (OAR) and dose lower bound limits for planning target volumes (PTV) as hard constraints, but it can also relax either of these constraint sets in a Lagrangian fashion and keep the other set as hard constraints. (iii) For faster solutions, we propose several heuristic methods based on the MIP model, as well as a meta-heuristic approach. The meta-heuristic is very efficient in practice, being able to generate dose- and machinery-feasible solutions for problem instances of clinical scale, e.g., obtaining feasible treatment plans to cases with 180 control points, 6750 sample voxels and 18,000 beamlets in 470seconds, or cases with 72 control points, 8000 sample voxels and 28,800 beamlets in 352seconds. With discretization and down-sampling of voxels, our method is capable of tackling a treatment field of \(8000 - 64, 000 \operatorname{cm}^3\), depending on the ratio of critical structure versus unspecified tissues.

MSC:

90C11 Mixed integer programming
92C55 Biomedical imaging and signal processing
90C10 Integer programming
90C59 Approximation methods and heuristics in mathematical programming

References:

[5] Cambazard, H.; O׳Mahony, E.; O׳Sullivan, B., Hybrid methods for the multileaf collimator sequencing problem, (Lodi, A.; Milano, M.; Toth, P., CPAIOR. Lecture notes in computer science, vol. 6140 (2010), Springer: Springer Berlin, Heidelberg), 56-70 · Zbl 1285.68152
[7] Ehrgott, M.; Güler, Ç.; Hamacher, H. W.; Shao, L., Mathematical optimization in intensity modulated radiation therapy, Ann Oper Res, 175, 309-365 (2010) · Zbl 1185.90219
[10] Fogliata, A.; Cozzi, L.; Clivio, A.; Ibatici, A.; Mancosu, P.; Navarria, P., Preclinical assessment of volumetric modulated arc therapy for total marrow irradiation, Int J Radiat Oncol, 80, 628-636 (2011)
[12] Grigorov, G.; Kron, T.; Wong, E.; Chen, J.; Sollazzo, J.; Rodrigues, G., Optimization of helical tomotherapy treatment plans for prostate cancer, Phys Med Biol, 48, 1933 (2003)
[13] Hamacher, H. W.; Ehrgott, M., EditorialSpecial section: using discrete mathematics to model multileaf collimators in radiation therapy, Discret Appl Math, 152, 4-5 (2005)
[14] Hansen, P.; Mladenovic, N., An introduction to VNS, (Voss, S.; Martello, S.; Osman, I.; Roucairol, C., Meta-heuristicsadvances and trends in local search paradigms for optimization (1998), Kluwer Academic Publishers: Kluwer Academic Publishers Boston), 223-233
[16] Langer, H.; Thai, V.; Papiez, L., Improved leaf sequencing reduces segments or monitor units needed to deliver IMRT using multileaf collimators, J Med Phys, 28, 12, 1450-1458 (2001)
[17] Lawrence, T. S.; Haken, R. K.T.; Giaccia, A., Principles of radiation oncology. cancerprinciples and practice of oncology (2008), Lippincott Williams and Wilkins: Lippincott Williams and Wilkins Philadelphia, PA, USA
[18] Mason, L.; Mak-Hau, V.; Ernst, A., An exact method for minimizing the total treatment time in intensity-modulated radiotherapy, J Oper Res Soc, 63, 1447-1456 (2012)
[19] McCormick, G., Computability of global solutions to factorable nonconvex programsPart i—convex underestimating problems, Math Program, 10, 146-175 (1976) · Zbl 0349.90100
[20] Men, C.; Jia, X.; Jiang, S.; Romeijn, H. E., Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT), J Med Phys, 37, 5787-5791 (2010)
[21] Mladenovic, N.; Hansen, P., Variable neighborhood search, Comput Oper Res, 24, 1097-1100 (1997) · Zbl 0889.90119
[22] Nazareth, D.; Brunner, S.; Jones, M.; Malhotra, H.; Bakhtiari, M., Optimization of beam angles for intensity modulated radiation therapy treatment planning using genetic algorithm on a distributed computing platform, J Med Phys, 34, 129-132 (2009)
[23] Oliver, M.; Jensen, M.; Chen, J.; Wong, E., Evaluation of optimization strategies and the effect of initial conditions on imat optimization using a leaf position optimization algorithm, Phys Med Biol, 54, 3543-3561 (2009)
[24] Otto, K., Volumetric modulated arc therapyIMRT in a single gantry arc, J Med Phys, 35, 310-317 (2008)
[25] Peng, F.; Jia, X.; Gu, X.; Epelman, M.; Romeijn, H.; Jiang, S., A new column-generation-based algorithm for VMAT treatment plan optimization, Phys Med Biol, 57, 4569-4588 (2012)
[26] Romeijn, H. E.; Dempsey, J. F.; Li, J. G., A unifying framework for multi-criteria fluence map optimization models, Phys Med Biol, 49, 1991 (2004)
[27] Schlaefer, A.; Schweikard, A., Stepwise multi-criteria optimization for robotic radiosurgery, J Med Phys, 35 (2008)
[28] Skórska, M.; Piotrowski, T., Optimization of treatment planning parameters used in tomotherapy for prostate cancer patients, Phys Med, 29, 273-285 (2013)
[31] Taskin, Z. C.; Smith, J. C.; Romeijn, H. E.; Dempsey, J. F., Optimal multileaf collimator leaf sequencing in IMRT treatment planning, Oper Res, 58, 675-690 (2010) · Zbl 1228.90171
[34] Wang, C.; Luan, S.; Tang, G.; Chen, D.; Earl, M.; Yu, C., Arc-modulated radiation therapy (amrt)a single-arc form of intensity-modulated arc therapy, Phys Med Biol, 53, 6291-6303 (2008)
[35] Wang, X.; Zhang, X.; Dong, L.; Liu, H.; Wu, Q.; Mohan, R., Development of methods for beam angle optimization for IMRT using an accelerated exhaustive search strategy, Int J Radiat Oncol Biol Phys, 60, 1325-1337 (2004)
[36] Xia, P.; Verhey, L. J., Multileaf collimator leaf sequencing algorithm for intensity modulated beams with multiple static segments, J Med Phys, 25, 1424-1434 (1998)
[37] Yu, C.; Tang, G., Intensity-modulated arc therapyprinciples, technologies and clinical implementation, Phys Med Biol, 56, R31-R54 (2011)
[38] Zeverino, M.; Agostinelli, S.; Taccini, G.; Cavagnetto, F.; Garelli, S., Advances in the implementation of helical tomotherapy based total marrow irradiation with a novel field junction technique, Med Dosim, 37, 314-320 (2012)
[39] Zhang, H. H.; Shi, L.; Meyer, R.; Nazareth, D.; D’Souza, W., Solving beam-angle selection and dose optimization simultaneously via high-throughput computing, INFORMS J Comput, 21, 427-444 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.