×

Underwriting information-theoretic accounts of quantum mechanics with a realist, psi-epistemic model. (English) Zbl 1348.81326

Summary: We propose an adynamical interpretation of quantum theory called Relational Blockworld (RBW) where the fundamental ontological element is a 4D graphical amalgam of space, time and sources called a “spacetimesource element.” These are fundamental elements of space, time and sources, not source elements in space and time. The transition amplitude for a spacetimesource element is computed using a path integral with discrete graphical action. The action for a spacetimesource element is constructed from a difference matrix \( \mathbf K\) and source vector \( \mathbf J\) on the graph, as in lattice gauge theory. \( \mathbf K\) is constructed from graphical field gradients so that it contains a non-trivial null space and \( \mathbf J\) is then restricted to the row space of \( \mathbf K\), so that it is divergence-free and represents a conserved exchange of energy-momentum. This construct of \( \mathbf K\) and \( \mathbf J\) represents an adynamical global constraint between sources, the spacetime metric and the energy-momentum content of the spacetimesource element, rather than a dynamical law for time-evolved entities. To illustrate this interpretation, we explain the simple EPR-Bell and twin-slit experiments. This interpretation of quantum mechanics constitutes a realist, psi-epistemic model that might underwrite certain information-theoretic accounts of the quantum.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81T25 Quantum field theory on lattices
81S40 Path integrals in quantum mechanics
81P40 Quantum coherence, entanglement, quantum correlations
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
00A79 Physics
Full Text: DOI

References:

[1] 1. W. M. Stuckey, M. Silberstein and Timothy McDevitt, Int. J. Quant. Found.1 (2015) 123-170.
[2] 2. M. Leifer, Quanta3 (1) (2014) 67-155. genRefLink(16, ’S0219749916400074BIB002’, ’10.12743
[3] 3. S. Lloyd, Programming the Universe: A Quantum Computer Scientist Takes On the Cosmos (Knopf, New York, 2006), p. 240.
[4] 4. J. A. Wheeler http://www.unt.edu/rss/class/rich/misc/JohnWheeler.html.
[5] 5. L. Dunlap, Topoi34 (2) (2015) 359-367. genRefLink(16, ’S0219749916400074BIB005’, ’10.1007
[6] 6. J. Bub and I. Pitowsky, Two dogmas about quantum mechanics, Many Worlds?, S. Saunders, J. Barrett, A. Kent and D. Wallace (eds.) (Oxford University Press, Oxford, 2010), pp. 433-459. genRefLink(16, ’S0219749916400074BIB006’, ’10.1093
[7] 7. J. Bub, Quantum mechanics is about quantum information, Found. Phys.35 (4) (2005) 541-560. genRefLink(16, ’S0219749916400074BIB007’, ’10.1007
[8] 8. K. Wharton, The Universe is not a Computer, Questioning the Foundations of Physics, A. Aguirre, B. Foster and Z. Merali (eds.) (Springer, 2015), pp. 177-190. [http://arxiv.org/abs/1211.7081] . genRefLink(16, ’S0219749916400074BIB008’, ’10.1007
[9] 9. S. Carroll, A Universe from Nothing? Discover Magazine Online (28 Apr 2012), http://blogs.discovermagazine.com/cosmicvariance/2012/04/28/a-universe-from-nothing/.
[10] 10. L. Smolin, Phys. World (June 2009) 21-26. genRefLink(16, ’S0219749916400074BIB010’, ’10.1088
[11] 11. R. P. Feynman, R. Leighton and M. Sands, The Feynman Lectures on Physics, Vol. 1 (Addison-Wesley Publishing, Reading, MA, 1963). · Zbl 1322.70001
[12] 12. M. Silberstein, W. M. Stuckey and T. McDevitt, Found. Phys.43(4) (2013) 502-532; W. M. Stuckey, M. Silberstein and M. Cifone, Reversing the arrow of explanation in the relational blockworld: Why temporal becoming, the dynamical brain and the external world are all in the mind, in Endophysics, Time, Quantum, and the Subjective, eds. R. Buccheri, A. C. Elitzur and M. Saniga (World Scientific, Singapore 2005), pp. 293-316. · Zbl 1269.81006
[13] 13. H. Price and K. Wharton, Entropy17 (2015) 7752-7767. [http://arxiv.org/abs/1508.01140] . genRefLink(16, ’S0219749916400074BIB013’, ’10.3390
[14] 14. Y. Aharonov, P. G. Bergman and J. L. Lebowitz, Phys. Rev.134 (1964) 1410-1416. genRefLink(16, ’S0219749916400074BIB014’, ’10.1103
[15] 15. J. Cramer, Rev. Mod. Phys.58 (1986) 647-687. genRefLink(16, ’S0219749916400074BIB015’, ’10.1103
[16] 16. S. Sinha and R. Sorkin, Found. Phys. Lett.4 (1991) 303-335. genRefLink(16, ’S0219749916400074BIB016’, ’10.1007
[17] 17. D. Dehlinger and M. W. Mitchell, Entangled photons, nonlocality, and Bell inequalities in the undergraduate laboratory, Am. J. Phys.70 (2002) 903-910. genRefLink(16, ’S0219749916400074BIB017’, ’10.1119
[18] 18. N. D. Mermin, Bringing home the atomic world: Quantum mysteries for anybody, Am. J. Phys.49 (1981) 940-943. genRefLink(16, ’S0219749916400074BIB018’, ’10.1119
[19] 19. D. Rickles and J. Bloom, Things Ain’t What They Used to Be, FQXi Essay Contest (Spring 2012), http://www.fqxi.org/community/forum/topic/1537.
[20] 20. S. Weinstein, Patterns in the Fabric of Nature, FQXi Essay Contest (Spring 2012), http://www.fqxi.org/community/forum/topic/1529.
[21] 21. C. Rovelli, Why Gauge? quant-ph/1308.5599, p. 7.
[22] 22. A. Zee, Quantum Field Theory in a Nutshell (Princeton University Press, Princeton, 2003), p. 173. · Zbl 1048.81002
[23] 23. W. M. Stuckey, M. Silberstein and T. McDevitt, An adynamical, graphical approach to quantum gravity and unification, The Algebraic Way: Space, Time and Quantum Beyond Peaceful Coexistence, I. Licata (ed.) (Imperial College Press, London, 2016), pp. 499-544. [http://arxiv.org/abs/0908.4348] . [Abstract]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.