×

Free and forced vibration nonlinear analysis of a microbeam using finite strain and velocity gradients theory. (English) Zbl 1348.74145

Summary: A nonlinear finite strain and velocity gradient framework is formulated for the Euler-Bernoulli beam theory. This formulation includes finite strain and the strain gradient within the strain energy generalization as well as velocity and its gradient within the kinetic energy generalization. Consequently, static and kinetic internal length scales are developed to capture size effects. The governing equation with initial and boundary conditions is obtained using the variational approach. Free and forced vibration of a simply supported nanobeam is studied for different values of static and kinetic length scales using the method of multiple scales.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
Full Text: DOI

References:

[1] Asghari, M., Kahrobaiyan, M.H., Ahmadian, M.T.: A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int. J. Eng. Sci. 48(12), 1749-1761 (2010). doi:10.1016/j.ijengsci.2010.09.025 · Zbl 1231.74258 · doi:10.1016/j.ijengsci.2010.09.025
[2] Asghari, M., Rahaeifard, M., Kahrobaiyan, M.H., Ahmadian, M.T.: The modified couple stress functionally graded Timoshenko beam formulation. Mater. Des. 32(3), 1435-1443 (2011). doi:10.1016/j.matdes.2010.08.046 · Zbl 1271.74257 · doi:10.1016/j.matdes.2010.08.046
[3] Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962-1990 (2011). doi:10.1016/j.ijsolstr.2011.03.006 · doi:10.1016/j.ijsolstr.2011.03.006
[4] Attard, M.M.: Finite strain—beam theory. Int. J. Solids Struct. 40(17), 4563-4584 (2003). doi:10.1016/S0020-7683(03)00216-6 · Zbl 1054.74615 · doi:10.1016/S0020-7683(03)00216-6
[5] Bakhtiari-Nejad, F., Nazemizadeh, M.: Size-dependent free vibration of nano/microbeams with piezo-layered actuators. Micro Nano Lett. 10(2), 93-98 (2015). doi:10.1049/mnl.2014.0317 · doi:10.1049/mnl.2014.0317
[6] dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. Math. Phys. Eng. Sci. 465(2107), 2177-2196 (2009). doi:10.1098/rspa.2008.0530 · Zbl 1186.74019 · doi:10.1098/rspa.2008.0530
[7] Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10(1), 1-16 (1972). doi:10.1016/0020-7225(72)90070-5 · Zbl 0229.73006 · doi:10.1016/0020-7225(72)90070-5
[8] Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233-248 (1972). doi:10.1016/0020-7225(72)90039-0 · Zbl 0247.73005 · doi:10.1016/0020-7225(72)90039-0
[9] Fried, E., Gurtin, M.E.: Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales. Arch. Ration. Mech. Anal. 182(3), 513-554 (2006). doi:10.1007/s00205-006-0015-7 · Zbl 1104.74006 · doi:10.1007/s00205-006-0015-7
[10] Ghasemi, A., Taheri-Behrooz, F., Farahani, S., Mohandes, M.: Nonlinear free vibration of an Euler-Bernoulli composite beam undergoing finite strain subjected to different boundary conditions. J. Vib. Control, pp. 1-13 (2013). (2014). doi:10.1177/1077546314528965 · Zbl 1341.74107
[11] Ghayesh, M.H., Amabili, M., Farokhi, H.: Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory. Int. J. Eng. Sci. 63, 52-60 (2013). doi:10.1016/j.ijengsci.2012.12.001 · Zbl 1423.74392 · doi:10.1016/j.ijengsci.2012.12.001
[12] Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M., Ahmadian, M.T.: A nonlinear strain gradient beam formulation. Int. J. Eng. Sci. 49(11), 1256-1267 (2011). doi:10.1016/j.ijengsci.2011.01.006 · Zbl 1423.74487 · doi:10.1016/j.ijengsci.2011.01.006
[13] Kahrobaiyan, M.H., Rahaeifard, M., Ahmadian, M.T.: Nonlinear dynamic analysis of a V-shaped microcantilever of an atomic force microscope. Appl. Math. Model. 35(12), 5903-5919 (2011). doi:10.1016/j.apm.2011.05.039 · Zbl 1228.74040 · doi:10.1016/j.apm.2011.05.039
[14] Karparvarfard, S.M.H., Asghari, M., Vatankhah, R.: A geometrically nonlinear beam model based on the second strain gradient theory. Int. J. Eng. Sci. 91, 63-75 (2015). doi:10.1016/j.ijengsci.2015.01.004 · Zbl 1423.74489 · doi:10.1016/j.ijengsci.2015.01.004
[15] Kong, S., Zhou, S., Nie, Z., Wang, K.: Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47(4), 487-498 (2009). doi:10.1016/j.ijengsci.2008.08.008 · Zbl 1213.74190 · doi:10.1016/j.ijengsci.2008.08.008
[16] Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477-1508 (2003). doi:10.1016/S0022-5096(03)00053-X · Zbl 1077.74517 · doi:10.1016/S0022-5096(03)00053-X
[17] Li, C., Lim, C.W., Yu, J.L.: Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load. Smart Mater. Struct. 20(1), 015023 (2010). doi:10.1088/0964-1726/20/1/015023 · doi:10.1088/0964-1726/20/1/015023
[18] Li, Y.S., Feng, W.J., Cai, Z.Y.: Bending and free vibration of functionally graded piezoelectric beam based on modified strain gradient theory. Compos. Struct. 115(1), 41-50 (2014). doi:10.1016/j.compstruct.2014.04.005 · doi:10.1016/j.compstruct.2014.04.005
[19] Ma, H.M., Gao, X.L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56(12), 3379-3391 (2008). doi:10.1016/j.jmps.2008.09.007 · Zbl 1171.74367 · doi:10.1016/j.jmps.2008.09.007
[20] Mindlin, R.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51-78. (1964). Retrieved from http://www.springerlink.com/index/N7078N1674172013.pdf · Zbl 0119.40302
[21] Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417-438 (1965). doi:10.1016/0020-7683(65)90006-5 · doi:10.1016/0020-7683(65)90006-5
[22] Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415-448 (1962). doi:10.1007/BF00253946 · Zbl 0112.38906 · doi:10.1007/BF00253946
[23] Mousavi, S.M., Paavola, J., Reddy, J.N.: Variational approach to dynamic analysis of third-order shear deformable plates within gradient elasticity. Meccanica 50(6), 1537-1550 (2015). doi:10.1007/s11012-015-0105-4 · Zbl 1329.74172 · doi:10.1007/s11012-015-0105-4
[24] Najar, F., El-Borgi, S., Reddy, J.N., Mrabet, K.: Nonlinear nonlocal analysis of electrostatic nanoactuators. Compos. Struct. 120, 117-128 (2015). doi:10.1016/j.compstruct.2014.09.058 · doi:10.1016/j.compstruct.2014.09.058
[25] Najar, F., Nayfeh, A.H., Abdel-Rahman, E.M., Choura, S., El-Borgi, S.: Nonlinear analysis of MEMS electrostatic microactuators: primary and secondary resonances of the first mode. J. Vib. Control 16(9), 1321-1349 (2010) · Zbl 1269.74099 · doi:10.1177/1077546309106520
[26] Nayfeh, A., Mook, D.: Nonlinear Oscillations. Wiley, New York (1979) · Zbl 0418.70001
[27] Park, S.K., Gao, X.-L.: Bernoulli-Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355-2359 (2006). doi:10.1088/0960-1317/16/11/015 · doi:10.1088/0960-1317/16/11/015
[28] Polizzotto, C.: A gradient elasticity theory for second-grade materials and higher order inertia. Int. J. Solids Struct. 49(15-16), 2121-2137 (2012). doi:10.1016/j.ijsolstr.2012.04.019 · doi:10.1016/j.ijsolstr.2012.04.019
[29] Reddy, J.N.: Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int. J. Eng. Sci. 48(11), 1507-1518 (2010). doi:10.1016/j.ijengsci.2010.09.020 · Zbl 1231.74048 · doi:10.1016/j.ijengsci.2010.09.020
[30] Roque, C.M.C., Ferreira, A.J.M., Reddy, J.N.: Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method. Int. J. Eng. Sci. 49(9), 976-984 (2011). doi:10.1016/j.ijengsci.2011.05.010 · Zbl 1231.74272 · doi:10.1016/j.ijengsci.2011.05.010
[31] Shaat, M., Abdelkefi, A.: Modeling the material structure and couple stress effects of nanocrystalline silicon beams for pull-in and bio-mass sensing applications. Int. J. Mech. Sci. 101-102, 280-291 (2015). doi:10.1016/j.ijmecsci.2015.08.002 · doi:10.1016/j.ijmecsci.2015.08.002
[32] Şimşek, M.: Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory. Compos. Part B Eng. 56, 621-628 (2014). doi:10.1016/j.compositesb.2013.08.082 · doi:10.1016/j.compositesb.2013.08.082
[33] Thai, H.T.: A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 52, 56-64 (2012). doi:10.1016/j.ijengsci.2011.11.011 · Zbl 1423.74356 · doi:10.1016/j.ijengsci.2011.11.011
[34] Vatankhah, R., Kahrobaiyan, M.H., Alasty, A., Ahmadian, M.T.: Nonlinear forced vibration of strain gradient microbeams. Appl. Math. Model. 37(18-19), 8363-8382 (2013). doi:10.1016/j.apm.2013.03.046 · Zbl 1426.74194 · doi:10.1016/j.apm.2013.03.046
[35] Wang, B., Zhao, J., Zhou, S.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A/Solids 29(4), 591-599 (2010). doi:10.1016/j.euromechsol.2009.12.005 · Zbl 1480.74194 · doi:10.1016/j.euromechsol.2009.12.005
[36] Wang, B., Zhou, S., Liu, M., Zhao, J.: A size-dependent Reddy-Levinson beam model based on a strain gradient elasticity theory. Meccanica 49, 1427-1441 (2014) · Zbl 1316.74031 · doi:10.1007/s11012-014-9912-2
[37] Yaghoubi, S.T., Mousavi, S.M., Paavola, J.: Strain and velocity gradient theory for higher-order shear deformable beams. Arch. Appl. Mech. 85(7), 877-892 (2015). doi:10.1007/s00419-015-0997-4 · Zbl 1341.74107 · doi:10.1007/s00419-015-0997-4
[38] Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731-2743 (2002). doi:10.1016/S0020-7683(02)00152-X · Zbl 1037.74006 · doi:10.1016/S0020-7683(02)00152-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.