×

An approach to elastoplasticity at large deformations. (English) Zbl 1348.74068

Summary: While elastoplasticity theories at small deformations are well established for various materials, elastoplasticity theories at large deformations are still a subject of controversy and lively discussions. Among the approaches to finite elastoplasticity two became especially popular. The first, implemented in the commercial finite element codes, is based on the introduction of a hypoelastic constitutive law and the additive elastic-plastic decomposition of the deformation rate tensor. Unfortunately, the use of hypoelasticity may lead to a nonphysical creation or dissipation of energy in a closed deformation cycle. In order to replace hypoelasticity with hyperelasticity the second popular approach based on the multiplicative elastic-plastic decomposition of the deformation gradient tensor was developed. Unluckily, the latter theory is not perfect as well because it introduces intermediate plastic configurations, which are geometrically incompatible, non-unique, and, consequently, fictitious physically.{ }In the present work, an attempt is made to combine strengths of the described approaches avoiding their drawbacks. Particularly, a tensor of the plastic deformation rate is introduced in the additive elastic-plastic decomposition of the velocity gradient. This tensor is used in the flow rule defined by the generalized isotropic Reiner-Rivlin fluid. The tensor of the plastic deformation rate is also used in an evolution equation that allows calculating an elastic strain tensor which, in its turn, is used in the hyperelastic constitutive law. Thus, the present approach employs hyperelasticity and the additive decomposition of the velocity gradient avoiding nonphysical hypoelasticity and the multiplicative decomposition of the deformation gradient associated with incompatible plastic configurations. The developed finite elastoplasticity framework for isotropic materials is specified to extend the classical \(J_{2}\)-theory of metal plasticity to large deformations and the simple shear deformation is analyzed.

MSC:

74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)

Software:

HYPLAS

References:

[1] Arghavani, J.; Auricchio, F.; Naghdabadi, R., A finite strain kinematic hardening constitutive model based on Hencky strain: general framework, solution algorithm and application to shape memory alloys, Int. J. Plasticity, 27, 940-961 (2011) · Zbl 1426.74065
[2] Asaro, R.; Lubarda, V., Mechanics of Solids and Materials (2006), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1220.74004
[3] Barenblatt, G. I.; Joseph, D. D., Collected Papers of R.S. Rivlin. vols. 1-2 (1997), Springer: Springer New York
[4] Bertram, A., Elasticity and Plasticity of Large Deformations: an Introduction (2005), Springer: Springer Berlin · Zbl 1189.74002
[5] Besdo, D.; Stein, E., Finite Inelastic Deformations - Theory and Applications: IUTAM Symposium Hannover, Germany 1991 (IUTAM Symposia) (1991), Springer: Springer Berlin
[6] Besseling, J. F., A thermodynamic approach to rheology, (Parkus, H.; Sedov, L. I., Proceeding of the IUTAM Symposium on Irreversible Aspects of Continuum Mechanics, Vienna (1966), Springer-Verlag: Springer-Verlag Wein), 16-53, 1968 · Zbl 0264.76005
[7] Besseling, J. F.; Van Der Giessen, E., Mathematical Modeling of Inelastic Deformation (1994), Chapman & Hall: Chapman & Hall London · Zbl 0809.73003
[8] Chakrabarty, J., Theory of Plasticity (2006), Butterworth-Heinemann: Butterworth-Heinemann Amsterdam
[9] Ciarlet, P., Mathematical Elasticity. Vol. 1: Three-dimensional Elasticity (1988), North-Holland: North-Holland Amsterdam · Zbl 0648.73014
[10] Dafalias, Y. F., The plastic spin concept and a simple illustration of its role in finite plastic transformations, Mech. Mater., 3, 223-233 (1984)
[11] Dafalias, Y. F., The plastic spin, J. Appl. Mech., 52, 865-871 (1985), Errata, 53, 290 (1986) · Zbl 0587.73052
[12] De Souza Neto, E. A.; Peric, D.; Owen, D. R.J., Computational Methods for Plasticity. Theory and Applications (2008), Wiley: Wiley Chichester
[13] Eckart, C., The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity, Phys. Rev., 73, 373-382 (1948) · Zbl 0032.22201
[14] Green, A. E.; Naghdi, P. M., A general theory of an elastic-plastic continuum, Arch. Rat. Mech. Anal., 18, 251-281 (1965), Corrigenda 19, 408 · Zbl 0133.17701
[15] Gurtin, M. E., A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on the accumulation of geometrically necessary dislocations, Int. J. Plasticity, 26, 1073-1096 (2010) · Zbl 1432.74047
[16] Gurtin, M. E.; Fried, E.; Anand, L., The Mechanics and Thermodynamics of Continua (2010), Cambridge University Press: Cambridge University Press Cambridge
[17] Haupt, P., Continuum Mechanics and Theory of Materials (2002), Springer: Springer Berlin · Zbl 0993.74001
[18] Havner, K. S., Finite Plastic Deformation of Crystalline Solids (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0774.73001
[19] Henann, D. L.; Anand, L., A large deformation theory for rate-dependent elastic-plastic materials with combined isotropic and kinematic hardening, Int. J. Plasticity, 25, 1833-1878 (2009)
[20] Huespe, A. E.; Needleman, A.; Oliver, J.; Sanchez, P. J., A finite strain, finite band method for modeling ductile fracture, Int. J. Plasticity, 28, 53-69 (2012)
[21] Hill, R., The Mathematical Theory of Plasticity (1950), Clarendon Press: Clarendon Press Oxford · Zbl 0041.10802
[22] Hill, R., A general theory of uniqueness and stability in elastic-plastic solids, J. Mech. Phys. Solids, 6, 236-249 (1958) · Zbl 0091.40301
[23] Hill, R., Some basic principles in the mechanics of solids without a natural time, J. Mech. Phys. Solids, 7, 209-225 (1959) · Zbl 0086.17301
[24] Hutchinson, J. W., Plastic buckling, Adv. Appl. Mech., 14, 67-144 (1974)
[25] Kachanov, L. M., Foundations of the Theory of Plasticity (1971), North-Holland: North-Holland Amsterdam · Zbl 0231.73015
[26] Khan, A. S.; Huang, S. J., Continuum Theory of Plasticity (1995), Wiley: Wiley New York · Zbl 0856.73002
[27] Kroner, E., Allgemeine kontinuumstheorie der versetzungen und eigenspannungen, Arch. Rat. Mech. Anal., 4, 273-334 (1960) · Zbl 0090.17601
[28] Lee, E. H., Elastic-plastic deformation at finite strains, J. Appl. Mech., 36, 1-6 (1969) · Zbl 0179.55603
[29] Lee, E. H.; Liu, D. T., Finite strain elastic-plastic theory with application to plane-wave analysis, J. Appl. Phys., 38, 19-27 (1967)
[30] Lele, S. P.; Anand, L., A large-deformation strain-gradient theory for isotropic viscoplastic materials, Int. J. Plasticity, 25, 420-453 (2009) · Zbl 1277.74009
[31] Lemaitre, J.; Chaboche, J. L., Mechanics of Solid Materials (1990), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0743.73002
[32] Leonov, A. L., Nonequilibrium thermodynamics and rheology of viscoelastic polymer media, Rheol. Acta, 15, 85-98 (1976) · Zbl 0351.73001
[33] Lubarda, V. A., Elastoplasticity Theory (2001), CRC Press: CRC Press New York · Zbl 1014.74001
[34] Lubliner, J., Plasticity Theory (1990), Macmillan: Macmillan New York · Zbl 0745.73006
[35] Maugin, G., The Thermomechanics of Plasticity and Fracture (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0753.73001
[36] McMeeking, R. M.; Rice, J. R., Finite-element formulations for problems of large elastic-plastic deformations, Int. J. Solids Struct., 11, 601-616 (1975) · Zbl 0303.73062
[37] Naghdi, P. M., A critical review of the state of finite plasticity, ZAMP, 41, 315-394 (1990) · Zbl 0712.73032
[38] Needleman, A.; Tvergaard, V., Finite element analysis of localization in plasticity, (Oden, J. T.; Carey, G. F., Finite Elements - Special Problems in Solid Mechanics, vol. 5 (1983), Prentice-Hall: Prentice-Hall Englewood Cliffs), 94-157
[39] Negahban, M., Thermodynamical Theory of Plasticity (2012), CRC Press: CRC Press Boca Raton · Zbl 1294.74002
[40] Nemat-Nasser, S., Plasticity: a Treatise on Finite Deformation of Heterogeneous Inelastic Materials (2004), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1073.74001
[41] Prager, W., An elementary discussion of definitions of stress rate, Quart. Appl. Math., 18, 403-407 (1960) · Zbl 0097.39601
[42] Rubin, M. B., On evolution equations for elastic deformation and the notion of hyperelasticity, Int. J. Eng. Sci., 47, 76-82 (2009) · Zbl 1213.74067
[43] Rubin, M. B.; Ichihara, M., Rheological models for large deformations of elastic-viscoplastic materials, Int. J. Eng. Sci., 48, 1534-1543 (2010) · Zbl 1231.74113
[44] Simo, J. C.; Hughes, T. J.R., Computational Inelasticity (1998), Springer: Springer New York · Zbl 0934.74003
[45] Srinivasa, A. R.; Srinivasan, S. M., Inelasticity of Engineering Materials: an Engineering Approach and a Practical Guide (2009), World Scientific Publishing Company: World Scientific Publishing Company Singapore
[46] Thamburaja, P., A finite-deformation-based phenomenological theory for shape-memory alloys, Int. J. Plasticity, 26, 1195-1219 (2010) · Zbl 1426.74243
[47] Truesdell, C., Hypo-elasticity, J. Rat. Mech. Anal., 4, 83-133 (1955) · Zbl 0064.42002
[48] Truesdell, C.; Noll, W., The nonlinear field theories of mechanics, (Flugge, S., Handbuch der Physik, vol. III/3 (1965), Springer: Springer Berlin) · Zbl 0779.73004
[49] Voyiadjis, G. Z.; Kattan, P., Finite elasto-plastic analysis of torsion problems using different spin tensors, Int. J. Plasticity, 8, 271-314 (1992) · Zbl 0825.73213
[50] Xiao, H.; Bruhns, O. T.; Meyers, A., Elastoplasticity beyond small deformations, Acta Mech., 182, 31-111 (2006) · Zbl 1116.74005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.