×

On constraints for displacement gradients in elastic materials. (English. Russian original) Zbl 1348.74055

Int. Appl. Mech. 52, No. 2, 119-132 (2016); translation from Prikl. Mekh., Kiev 52, No. 2, 20-35 (2016).
Summary: The classical, quite abstract constraint \(|u_{k,i}| < 1\) for elastic materials and a number of possible mathematical and physical constraints for displacement gradients are discussed.

MSC:

74B20 Nonlinear elasticity
Full Text: DOI

References:

[1] V. L. Bogdanov, A. N. Guz, and V. M. Nazarenko, “Spatial problems of the fracture of materials loaded along cracks (review),” Int. Appl. Mech., 51, No. 5, 489-560 (2015). · Zbl 1331.74002 · doi:10.1007/s10778-015-0710-x
[2] V. H. Carneiro, J. Meireles, and H. Puga, “Auxetic materials—A review,” Materials Science-Poland, 31, No. 4, 561-571 (2013). · doi:10.2478/s13536-013-0140-6
[3] C. Cattani and J. J. Rushchitsky, Wavelet and Wave Analysis as applied to Materials with Micro or Nanostructures, World Scientific, Singapore-London (2007). · Zbl 1152.74001
[4] K. K. Dudek, D. Attard, R. Caruana-Gauci, K. W. Wojciechowski, and J. N. Grima, “Unimode metamaterials exhibiting negative linear compressibility and negative thermal expansion,” Smart Mater. Struct., 25, No. 2, 025009 (2016).
[5] Y. B. Fu and R. W. Ogden (eds.), Nonlinear Elasticity: Theory and Applications, London Mathematical Society Lecture Note Series, 283, Cambridge University Press, Cambridge (2001). · Zbl 0962.00003
[6] P. Germain, Cours de Mechanique des Milieux Continua, Vol. 1. Theorie Generale, Masson et Cie Editeurs, Paris (1973). · Zbl 0254.73001
[7] Z. A. Goldberg, “On interaction of plane longitudinal and transverse waves,” Akust. Zh., 6, No. 2, 307-310 (1960).
[8] I. I. Goldenblatt, Nonlinear Problems of the Theory of Elasticity [in Russian], Nauka, Moscow (1969).
[9] A. E. Green and J. E. Adkins, Large Elastic Deformations and Nonlinear Continuum Mechanics, Oxford University Press, Clarendon Press, London (1960). · Zbl 0090.17501
[10] A. N. Guz, Elastic Waves in Bodies with Initial Stresses, Vol. 1-2, Naukova Dumka, Kyiv (1986).
[11] A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies, Ser.: Foundations of Engineering Mechanics, Springer, Berlin (1999). · Zbl 0922.73001
[12] A. N. Guz, “Ultrasonic nondestructive method for stress analysis of structural members and near-surface layers of materials: Focus on Ukrainian research (review),” Int. Appl. Mech., 50, No. 3, 231-252 (2014). · doi:10.1007/s10778-014-0627-9
[13] A. N. Guz, “Recognition of the achievements of the S. P. Timoshenko Institute of Mechanics by the world’s scientific community,” Int. Appl. Mech., 51, No. 1, 1-11 (2015). · doi:10.1007/s10778-015-0671-0
[14] A. N. Guz, F. G. Makhort, and O. I. Gushcha, Introduction to Electroelasticity [in Russian], Naukova Dumka, Kyiv (1977).
[15] A. N. Guz and J. J. Rushchitsky, “Establishing foundations of the mechanics of nanocomposites,” Int. Appl. Mech., 47, No. 1, 2-44 (2011). · Zbl 1272.74117 · doi:10.1007/s10778-011-0440-7
[16] A. N. Guz and J. J. Rushchitsky, Short Introduction to Mechanics of Nanocomposites, Scientific and Academic Publishing, Rosemead, CA (2013).
[17] A. N. Guz and J. J. Rushchitsky, “Some fundamental aspects of mechanics of nanocomposite materials,” J. Nanotechnol., 24, special issue “Nanocomposites 2013,” 1-15 (2013).
[18] A. N. Guz and J. J. Rushchitsky, “On features of continuum description of nanocomposite material,” J. Research in Nanotechnol., 1, No. 1, 50-60 (2014).
[19] I. A. Guz and J. J. Rushchitsky, “Comparison of mechanical properties and effects in micro- and nanocomposites with carbon fillers (carbon microfibers, graphite microwhiskers, and carbon nanotubes),” Mech. Comp. Mater., 40, No. 3, 179-190 (2004). · doi:10.1023/B:MOCM.0000033261.29410.c1
[20] A. Hanyga, Mathematical Theory of Nonlinear Elasticity, Ellis Horwood, California (1983). · Zbl 0531.73010
[21] R. B. Hetnarski and J. Ignaczak, The Mathematical Theory of Elasticity, CRC Press, Taylor and Francis Group, Boca Raton (2010). · Zbl 1221.74001
[22] G. A. Holzapfel, Nonlinear Solid Mechanics. A Continuum Approach for Engineering, Wiley, Chichester (2006).
[23] J. Lighthill, Waves in Fluids, Cambridge University Press, Cambridge (1978). · Zbl 0375.76001
[24] T. C. Lim, Auxetic Materials and Structures, Springer, Singapore (2015). · doi:10.1007/978-981-287-275-3
[25] A. I. Lurie, Nonlinear Theory of Elasticity, North-Holland, Amsterdam (1990). · Zbl 0715.73017
[26] A. I. Lurie, Theory of Elasticity, Ser.: Foundations of Engineering Mechanics, Springer, Berlin (2005).
[27] F. D. Murnaghan, Finite Deformation in an Elastic Solid, John Wiley, New York 1951 (1967). · Zbl 0045.26504
[28] V. V. Novozhilov, Foundations of the Nonlinear Theory of Elasticity, Graylock Press, New York (1953); Dover (2011). · Zbl 0051.16305
[29] R. W. Ogden, Nonlinear Elastic Deformations, Dover, New York (1997). · Zbl 0541.73044
[30] J. J. Rushchitsky, Nonlinear Elastic Waves in Materials, Ser.: Foundations of Engineering Mechanics, Springer, Heidelberg (2014). · Zbl 1341.74023
[31] J. J. Rushchitsky, “Auxetic linearly elastic isotropic materials: restrictions on elastic moduli,” Arch. Appl. Mech., 72, No. 1, 72-76 (2015). · Zbl 1341.74023
[32] V. Hauk (ed.), Structural and Residual Stress Analysis, Elsevier Science B.V., Amsterdam (1997) (e-variant 2006). · Zbl 0944.74002
[33] C. Truesdell, A First Course in Rational Continuum Mechanics, The John Hopkins University, Baltimore (1972); Academic Press, New York (1991). · Zbl 0866.73001
[34] C. Truesdell and W. Noll, The Nonlinear Field Theories of Mechanics, Flügge Handbuch der Physik, Band III/3, Springer Verlag, Berlin (1965); (2004). · Zbl 1068.74002
[35] R. Zhu, X. N. Liu, and G. L. Huang, “Study of anomalous wave propagation and reflection in semi-infinite elastic metamaterials,” Wave Motion, 55, 73-83 (2015). · Zbl 1454.74069 · doi:10.1016/j.wavemoti.2014.12.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.