×

Quantitative nonlinear embeddings into Lebesgue sequence spaces. (English) Zbl 1348.46024

For a map \(f:(X,d_X)\to (Y,d_Y)\) between metric spaces let \[ \rho_f(t)=\inf\{d_Y(f(x),f(y)) : d_X(x,y)\geq t\}, \] and \[ \omega_f(t)=\sup\{d_Y(f(x),f(y)) : d_X(x,y)\leq t\}. \] When \(X\) and \(Y\) are not uniformly discrete \(f\) is called a uniform embedding if \(\omega_f(t)\to 0\) when \(t\to 0\) and \(\rho_f(t)>0\) for all \(t>0\). If \(X\) and \(Y\) are unbounded, \(f\) is called a coarse embedding if \(\rho_f(t)\to \infty\) when \(t\to \infty\) and \(\omega_f(t)<\infty\) for all \(t>0\). A strong embedding is an embedding which is simultaneously coarse and uniform.
In this paper these notions are quantified in terms of growth and relative growth of the functions \(\rho_f\) and \(\omega_f\). One of the main goals is to study the question: How good can an embedding be from \(X\) to \(Y\) be in the case where \(X\) and \(Y\) are some of the spaces \(L_p\), \(\ell_p\)? The author considers both the Banach space case \(p\geq 1\) and the quasi-Banach space case \(0<p<1\).
At the end of the paper the author provides a table which summarizes the known results in this direction.
The author uses related techniques for studying embeddability of locally compact amenable groups and spaces with Yu’s property A.

MSC:

46B80 Nonlinear classification of Banach spaces; nonlinear quotients
20F65 Geometric group theory
30L05 Geometric embeddings of metric spaces
46B85 Embeddings of discrete metric spaces into Banach spaces; applications in topology and computer science

References:

[1] 1. F. Albiac, Nonlinear structure of some classical quasi-Banach spaces and F-spaces, J. Math. Anal. Appl.340 (2008) 1312-1325. genRefLink(16, ’S1793525316500011BIB001’, ’10.1016 · Zbl 1144.46004
[2] 2. F. Albiac and F. Baudier, Embeddability of snowflaked metrics with applications to the nonlinear geometry of the spaces Lp and p for 0<p< J. Geom. Anal.25 (2015) 1-24. genRefLink(16, ’S1793525316500011BIB002’, ’10.1007 · Zbl 1319.46016
[3] 3. G. Arzhantseva, C. Druţu and M. Sapir, Compression functions of uniform embeddings of groups into Hilbert and Banach spaces, J. Reine Angew. Math.633 (2009) 213-235. · Zbl 1258.20032
[4] 4. P. Assouad, Plongements lipschitziens dans Rn, Bull. Soc. Math. France111 (1983) 429-448. (French with English Summary). · Zbl 0597.54015
[5] 5. T. Austin, Amenable groups with very poor compression into Lebesgue spaces, Duke Math. J.159 (2011) 187-222. genRefLink(16, ’S1793525316500011BIB005’, ’10.1215 · Zbl 1226.43001
[6] 6. F. Baudier, Embeddings of proper metric spaces into Banach spaces, Hous. J. Math.38 (2012) 209-223. · Zbl 1298.46019
[7] 7. Y. Benyamini, The uniform classification of Banach spaces, Texas functional analysis seminar 1984-1985 (Austin, Tex.), 1985, pp. 15-38.
[8] 8. Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Vol. 1, American Mathematical Society Colloquium Publications, Vol. 48 (Amer. Math. Soc. 2000). · Zbl 0946.46002
[9] 9. J. Bourgain, Remarks on the extension of Lipschitz maps defined on discrete sets and uniform homeomorphisms, Geom. Aspects of Funct. Anal.1987 (1985/86) 157-167.
[10] 10. S. Campbell and G. Niblo, Hilbert space compression and exactness of discrete groups, J. Funct. Anal.222 (2005) 292-305. genRefLink(16, ’S1793525316500011BIB010’, ’10.1016 · Zbl 1121.20032
[11] 11. M. Dadarlat and E. Guentner, Constructions preserving Hilbert space uniform embeddability of discrete groups, Trans. Amer. Math. Soc.355 (2003) 3253-3275 (electronic). genRefLink(16, ’S1793525316500011BIB011’, ’10.1090 · Zbl 1028.46104
[12] 12. P. Enflo, On the nonexistence of uniform homeomorphisms between Lp-spaces, Ark. Mat.8 (1969) 103-105. genRefLink(16, ’S1793525316500011BIB012’, ’10.1007
[13] 13. A. Erschler, On isoperimetric profiles of finitely generated groups, Geom. Dedicata100 (2003) 157-171. genRefLink(16, ’S1793525316500011BIB013’, ’10.1023 · Zbl 1049.20024
[14] 14. M. Gromov, Entropy and isoperimetry for linear and non-linear group actions, Groups Geom. Dyn.2 (2008) 499-593. genRefLink(16, ’S1793525316500011BIB014’, ’10.4171 · Zbl 1280.20043
[15] 15. E. Guentner and J. Kaminker, Exactness and uniform embeddability of discrete groups, J. London Math. Soc. (2)70 (2004) 703-718. genRefLink(16, ’S1793525316500011BIB015’, ’10.1112 · Zbl 1082.46049
[16] 16. U. Haagerup and A. Przybyszewska, Proper metrics on locally compact groups, and proper affine isometric actions on Banach spaces, arXiv:math/0606794v1.
[17] 17. W. B. Johnson and N. L. Randrianarivony, lp (p>2) does not coarsely embed into a Hilbert space, Proc. Amer. Math. Soc.134 (2006) 1045-1050 (electronic). genRefLink(16, ’S1793525316500011BIB017’, ’10.1090 · Zbl 1097.46051
[18] 18. N. J. Kalton, Coarse and uniform embeddings into reflexive spaces, Quart. J. Math. (Oxford)58 (2007) 393-414. genRefLink(16, ’S1793525316500011BIB018’, ’10.1093 · Zbl 1148.46046
[19] 19. N. J. Kalton, The nonlinear geometry of Banach spaces, Rev. Mat. Complut.21 (2008) 7-60. genRefLink(16, ’S1793525316500011BIB019’, ’10.5209 · Zbl 1156.46003
[20] 20. N. J. Kalton and N. L. Randrianarivony, The coarse Lipschitz structure of pq, Math. Ann.341 (2008) 223-237. genRefLink(16, ’S1793525316500011BIB020’, ’10.1007 · Zbl 1146.46050
[21] 21. S. Khot and N. Vishnoi, The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into 1, in Proc. of the 46th Annual IEEE Conference on Foundations of Computer Science, IEEE (2005), pp. 53-62.
[22] 22. M. Kraus, Coarse and uniform embeddings between Orlicz sequence spaces, Mediterr. J. Math.11 (2014) 653-666. genRefLink(16, ’S1793525316500011BIB022’, ’10.1007 · Zbl 1296.46022
[23] 23. G. Lancien, A short course on nonlinear geometry of Banach spaces, in Topics in Functional and Harmonic Analysis, Theta Ser. Adv. Math., Vol. 14 (Theta, 2013), pp. 77-101.
[24] 24. J. R. Lee and Moharrami, Bilipschitz snowflakes and metrics of negative type, STOC10, 2010. · Zbl 1293.68295
[25] 25. J. R. Lee and A. Naor, Lp metrics on the Heisenberg group and the Goemans-Linial conjecture, FOCS06 (2006).
[26] 26. M. Mendel and A. Naor, Euclidean quotients of finite metric spaces, Adv. Math.189 (2004) 451-494. genRefLink(16, ’S1793525316500011BIB026’, ’10.1016 · Zbl 1088.46007
[27] 27. M. Mendel and A. Naor, Metric cotype, Ann. Math. (2)168 (2008) 247-298. genRefLink(16, ’S1793525316500011BIB027’, ’10.4007
[28] 28. A. Naor and Y. Peres, Embeddings of discrete groups and the speed of random walks, Int. Math. Res. Not. IMRN (2008) Art. ID rnn 076, 34. · Zbl 1163.46007
[29] 29. P. Nowak, On coarse embeddability into lp-spaces and a conjecture of Dranishnikov, Fund. Math.189 (2006) 111-116. genRefLink(16, ’S1793525316500011BIB029’, ’10.4064 · Zbl 1097.46052
[30] 30. P. Nowak, On exactness and isoperimetric profiles of discrete groups, J. Funct. Anal.243 (2007) 323-344. genRefLink(16, ’S1793525316500011BIB030’, ’10.1016 · Zbl 1117.60008
[31] 31. P. Nowak and G. Yu, Large Scale Geometry, EMS Textbooks in Mathematics (European Math. Soc., 2012). genRefLink(16, ’S1793525316500011BIB031’, ’10.4171 · Zbl 1264.53051
[32] 32. A. Y. Olshanskii and D. V. Osin, A quasi-isometric embedding theorem for groups, Duke Math. J.162 (2013) 1621-1648. genRefLink(16, ’S1793525316500011BIB032’, ’10.1215
[33] 33. M. I. Ostrovskii, Coarse embeddability into Banach spaces, Topology Proc.33 (2009) 163-183. · Zbl 1179.54042
[34] 34. M. I. Ostrovskii, Embeddability of locally finite metric spaces into Banach spaces is finitely determined, Proc. Amer. Math. Soc.140 (2012) 2721-2730. genRefLink(16, ’S1793525316500011BIB034’, ’10.1090 · Zbl 1276.46013
[35] 35. J.-P. Pier, Amenable Locally Compact Groups, Pure and Applied Mathematics (New York) (John Wiley & Sons, 1984). · Zbl 0597.43001
[36] 36. J.-L. Tu, Remarks on Yu’s ”property A” for discrete metric spaces and groups, Bull. Soc. Math. France129 (2001) 115-139. · Zbl 1036.58021
[37] 37. A. Vershik, Amenability and approximation of infinite groups, Selecta Math. Sov.2 (1982) 311-330. · Zbl 0533.22007
[38] 38. G. Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math.139 (2000) 201-240. genRefLink(16, ’S1793525316500011BIB038’, ’10.1007 · Zbl 0956.19004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.