×

Fekete-Szegő problem for close-to-convex functions with respect to a certain convex function dependent on a real parameter. (English) Zbl 1348.30007

Summary: Given \(\alpha \in [0, 1]\), let \(h_{\alpha}(z):=z/(1- \alpha z)\), \(z \in \mathbb D:= \{z \in \mathbb C: |z| < 1\}\). An analytic standardly normalized function \(f\) in \(\mathbb D\) is called close-to-convex with respect to \(h_{\alpha}\) if there exists \(\delta \in (-\pi/2, \pi/2)\) such that \(\mathrm{Re}\{e^{i \delta}zf'(z)/h_{\alpha}(z)\} > 0\), \(z \in \mathbb D\). For the class \(\mathcal C(h_{\alpha})\) of all close-to-convex functions with respect to \(h_{\alpha}\), the Fekete-Szegö problem is studied.

MSC:

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
Full Text: DOI

References:

[1] Abdel-Gawad H R, Thomas D K. A subclass of close-to-convex functions. Publ de L’Inst Math, 1991, 49(63): 61-66 · Zbl 0736.30007
[2] Bhowmik B, Ponnusamy S, Wirths K J. On the Fekete-Szegö problem for concave univalent functions. J Math Anal Appl, 2011, 373: 432-438 · Zbl 1202.30015 · doi:10.1016/j.jmaa.2010.07.054
[3] Fekete M, Szegö G. Eine Bemerkung über ungerade schlichte Funktionen. J Lond Math Soc, 1933, 8: 85-89 · JFM 59.0347.04 · doi:10.1112/jlms/s1-8.2.85
[4] Goodman A W. Univalent Functions. Tampa: Mariner, 1983 · Zbl 1041.30501
[5] Goodman A W, Saff E B. On the definition of close-to-convex function. Int J Math Math Sci, 1978, 1: 125-132 · Zbl 0383.30005 · doi:10.1155/S0161171278000150
[6] Jakubowski Z J. Sur le maximum de la fonctionnelle |A3 - αA22 | (0 ≤ α < 1) dans la famille de fonctions FM. Bull Soc Sci Lett Lódź, 1962, 13(1): 19pp · Zbl 0152.07003
[7] Jameson G J O. Counting zeros of generalized polynomials: Descartes’ rule of signs and Leguerre’s extensions. Math Gazette, 2006, 90(518): 223-234 · doi:10.1017/S0025557200179628
[8] Kanas S. An unified approach to the Fekete-Szegö problem. Appl Math Comput, 2012, 218: 8453-8461 · Zbl 1251.30018 · doi:10.1016/j.amc.2012.01.070
[9] Kanas S, Lecko A. On the Fekete-Szegö problem and the domain of convexity for a certain class of univalent functions. Folia Sci Univ Tech Resov, 1990, 73: 49-57 · Zbl 0741.30012
[10] Kaplan W. Close to convex Schlicht functions. Michigan Math J, 1952, 1: 169-185 · Zbl 0048.31101 · doi:10.1307/mmj/1028988895
[11] Keogh F R, Merkes E P. A coefficient inequality for certain classes of analytic functions. Proc Amer Math Soc, 1969, 20: 8-12 · Zbl 0165.09102 · doi:10.1090/S0002-9939-1969-0232926-9
[12] Kim Y C, Choi J H, Sugawa T. Coefficient bounds and convolution properties for certain classes of close-to-convex functions. Proc Japan Acad, 2000, 76: 95-98 · Zbl 0965.30006 · doi:10.3792/pjaa.76.95
[13] Koepf W. On the Fekete-Szegö problem for close-to-convex functions. Proc Amer Math Soc, 1987, 101: 89-95 · Zbl 0635.30019
[14] Kowalczyk B, Lecko A. The Fekete-Szegö inequality for close-to-convex functions with respect to a certain starlike function dependent on a real parameter. J Inequal Appl, 2014, 1.65: 1-16 · Zbl 1375.30017
[15] Kowalczyk B, Lecko A. The Fekete-Szegö problem for close-to-convex functions with respect to the Koebe function. Acta Math Sci Ser B Engl Ed, 2014, 34(5): 1571-1583 · Zbl 1324.30025 · doi:10.1016/S0252-9602(14)60104-1
[16] Kowalczyk B, Lecko A. Fekete-Szegö problem for a certain subclass of close-to-convex functions. Bull Malays Math Sci Soc, 2015, 38: 1393-1410 · Zbl 1323.30019 · doi:10.1007/s40840-014-0091-z
[17] Kowalczyk B, Lecko A, Srivastava H M. A note on the Fekete-Szegö problem for closeto-convex functions with respect to convex function. Preprint · Zbl 1499.30107
[18] Laguerre E N. Sur la théeorie des équations numériques. J Math Pures Appl, 1883, 9: 99-146 (Oeuvres de Laguerre, Vol 1, Paris, 1898, 3-47) · JFM 15.0063.02
[19] Lecko A. Some generalization of analytic condition for class of functions convex in a given direction. Folia Sci Univ Tech Resov, 1993, 121(14): 23-34 · Zbl 0858.30001
[20] Lecko A. A generalization of analytic condition for convexity in one direction. Demonstratio Math, 1997, XXX(1): 155-170 · Zbl 0888.30009
[21] Lecko A, Yaguchi T. A generalization of the condition due to Robertson. Math Japonica, 1998, 47(1): 133-141 · Zbl 0920.30012
[22] London R R. Fekete-Szegö inequalities for close-to-convex functions. Proc Amer Math Soc, 1993, 117(4): 947-950 · Zbl 0771.30007
[23] Noshiro K. On the theory of schlicht functions. J Fac Sci Hokkaido Univ Jap, 1934-35, 2: 129-155 · Zbl 0010.26305
[24] Ozaki S. On thE theory of multivalent functions. Sci Rep Tokyo Bunrika Daig Sect A, 1935, 2: 167-188 · JFM 61.0353.02
[25] Pfluger A. The Fekete-Szegö inequality for complex parameter. Complex Variables, 1986, 7: 149-160 · Zbl 0553.30002 · doi:10.1080/17476938608814195
[26] Pommerenke Ch. Univalent Functions. Göttingen: Vandenhoeck & Ruprecht, 1975 · Zbl 0298.30014
[27] Robertson M S. Analytic functions star-like in one direction. Amer J Math, 1936, 58: 465-472 · Zbl 0014.12002 · doi:10.2307/2370963
[28] Srivastava H M, Mishra A K, Das M K. The Fekete-Szegö problem for a subclass of close-to-convex functions. Complex Variables, 2001, 44: 145-163 · Zbl 1021.30014 · doi:10.1080/17476930108815351
[29] Turowicz A. Geometria zer wielomianów (Geometry of zeros of polynomials). Warszawa: PWN, 1967 (in Polish)
[30] Warschawski S E. On the higher derivatives at the boundary in conformal mapping. Trans Amer Math Soc, 1935, 38(2): 310-340 · Zbl 0014.26707 · doi:10.1090/S0002-9947-1935-1501813-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.