×

Tilting-connected symmetric algebras. (English) Zbl 1348.16010

Let \(A\) be a finite dimensional algebra over a field. The main result of the paper asserts that if \(A\) is representation-finite symmetric then the homotopy category \(K^b(\mathrm{proj\,}A)\) of bounded complexes of projective \(A\)-modules is tilting-connected, that is, the action of iterated irreducible tilting mutation on this category is transitive. In fact, a stronger assertion is proved: the category \(K^b(\mathrm{proj\,}A)\) is silting-discrete, provided \(A\) is a representation-finite symmetric algebra. The theorem is obtained within the frames of the theory of silting mutations for self-injective algebras, introduced by T. Aihara and O. Iyama [“Silting mutation in triangulated categories”, arXiv:1009.3370]. Another important result is a silting version of the classical Bongartz’s Lemma on partial tilting modules.

MSC:

16G10 Representations of associative Artinian rings
16G60 Representation type (finite, tame, wild, etc.) of associative algebras
18E30 Derived categories, triangulated categories (MSC2010)
16E30 Homological functors on modules (Tor, Ext, etc.) in associative algebras

References:

[1] Abe, H., Hoshino, M.: On derived equivalences for selfinjective algebras. Commun. Algebra 34(12), 4441-4452 (2006) · Zbl 1112.16017 · doi:10.1080/00927870600938472
[2] Aihara, T.: Mutating Brauer trees. arXiv:1009.3210 · Zbl 1327.16004
[3] Aihara, T., Iyama, O.: Silting mutation in triangulated categories. J. Lond. Math. Soc. arXiv:1009.3370 · Zbl 1271.18011
[4] Al-Nofayee, S., Rickard, J.: Rigidity of tilting complexes and derived equivalence for self-injective algebras. http://www.maths.bris.ac.uk/ majcr/papers.html (preprint)
[5] Assem, I., Simson, D., Skowronski, A.: Elements of the Representation Theory of Associative Algebras, vol. 1. Techniques of Representation Theory, London Mathematical Society Student Texts, 65. Cambridge University Press, Cambridge (2006) · Zbl 1092.16001
[6] Auslander, M., Reiten, I., Smalo, S.O.: Representation Theory of Artin Algebras. Cambridge Stud. Adv. Math., vol. 36, Cambridge University Press, Cambridge (1995) · Zbl 0834.16001 · doi:10.1017/CBO9780511623608
[7] Bongartz, K., Tilted algebras. Representations of algebras (Puebla 1980), 26-38 (1981), Berlin · Zbl 0478.16025
[8] Happel, D.: Triangulated Categories in the Representation Theory of Finite-dimensional Algebras. London Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cambridge (1988) · Zbl 0635.16017 · doi:10.1017/CBO9780511629228
[9] Hoshino, M., Kato, Y.: Tilting complexes defined by idempotents. Commun. Algebra 30(1), 83-100 (2002) · Zbl 1002.16004 · doi:10.1081/AGB-120006480
[10] Huisgen-Zimmermann, B., Saorin, M.: Geometry of chain complexes and outer automorphisms under derived equivalence. Trans. Am. Math. Soc. 353, 4757-4777 (2001) · Zbl 1036.16003 · doi:10.1090/S0002-9947-01-02815-X
[11] Okuyama, T.: Some examples of derived equivalent blocks of finite groups (1998, preprint)
[12] Rickard, J.: Morita theory for derived categories. J. Lond. Math. Soc. 39(2), 436-456 (1989) · Zbl 0642.16034 · doi:10.1112/jlms/s2-39.3.436
[13] Rickard, J.: Equivalences of derived categories for symmetric algebras. J. Algebra 257, 460-481 (2002) · Zbl 1033.20005 · doi:10.1016/S0021-8693(02)00520-3
[14] Smalo, S.O.: Torsion theories and tilting modules. Bull. Lond. Math. Soc. 16(5), 518-522 (1984) · Zbl 0519.16016 · doi:10.1112/blms/16.5.518
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.