×

Failures of weak approximation in families. (English) Zbl 1348.14067

It follows from a conjecture of J.-L. Colliot-Thélène [Bolyai Soc. Math. Stud. 12, 171–221 (2003; Zbl 1077.14029)] that if a smooth projective geometrically integral variety \(X\) over a number field \(k\) is geometrically rationally connected, with Br \(X/\)Br \(k=0\), then it satisfies the Hasse principle and weak approximation. In contrast, this paper gives a large class of varieties which “almost-always” fail to satisfy weak approximation.
To be specific, let \(k\) be a number field and let \(\pi:X\rightarrow\mathbb{P}^n\) be a flat surjective \(k\)-morphism of finite type, with \(X\) smooth, projective and geometrically integral over \(k\). Then the varieties considered are the fibres \(\pi^{-1}(P)\) for \(P\in \mathbb{P}^n(k)\cap\pi(X(\mathbb{A}_k))\). Subject to a list of 7 conditions, it is shown that for 100variety \(X_P\) is smooth, but fails weak approximation. Indeed a positive proportion asymptotically of these varieties have adèlic points, but the proportion with rational points is 0
As a nice example the paper considers diagonal cubic surfaces, \[ a_0X_0^3+a_1X_1^3+a_2X_2^3+a_3X_3^3=0. \] For these a positive proportion, around 86but it is shown that a vanishingly small proportion have rational points. (In contrast, the conjecture mentioned above would imply that the Hasse principle and weak approximation should hold for almost all general cubic surfaces with an adèlic point.) A similar result is obtained for diagonal quartic surfaces.

MSC:

14G05 Rational points
14G25 Global ground fields in algebraic geometry
14D10 Arithmetic ground fields (finite, local, global) and families or fibrations
11G35 Varieties over global fields
11D25 Cubic and quartic Diophantine equations

Citations:

Zbl 1077.14029

References:

[1] A.Beilinson, J.Bernstein and P.Deligne, Faisceaux pervers, in Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100 (Société Mathématique de France, Paris, 1982), 5-171. · Zbl 0536.14011
[2] M.Bhargava, The geometric sieve and the density of squarefree values of invariant polynomials, Preprint (2014), arXiv:1402.0031.
[3] M.Bhargava, J.Cremona and T.Fisher, The proportion of plane cubic curves over<![CDATA \([\mathbb{Q}]]\)>that everywhere locally have a point, Int. J. Number Theory, to appear. Preprint (2013),arXiv:1311.5578. · Zbl 1341.11033
[4] M.Bhargava, A.Shankar and J.Wang, Geometry-of-numbers methods over global fields I: Prehomogeneous vector spaces, Preprint (2015), arXiv:1512.03035.
[5] M. J.Bright, Computations on diagonal quartic surfaces, PhD thesis, University of Cambridge (2002).
[6] M. J.Bright, Bad reduction of the Brauer-Manin obstruction, J. Lond. Math. Soc. (2)91 (2015), 643-666.10.1112/jlms/jdv0053355119 · Zbl 1339.11068 · doi:10.1112/jlms/jdv005
[7] N.Broberg, Rational points of cubic surfaces, in Rational points on algebraic varieties, Progress in Mathematics, vol. 199 (Birkhäuser, Basel, 2001), 13-35.10.1007/978-3-0348-8368-9_2 · Zbl 1080.14517 · doi:10.1007/978-3-0348-8368-9_2
[8] T. D.Browning and D. R.Heath-Brown, Forms in many variables and differing degrees, J. Eur. Math. Soc. (JEMS), to appear. Preprint (2014), arXiv:1403.5937. · Zbl 1383.11039
[9] J.-L.Colliot-Thélène, Points rationnels sur les fibrations, in Higher dimensional varieties and rational points (Budapest, 2001) (Springer, Berlin, 2003), 171-221.10.1007/978-3-662-05123-8_7 · Zbl 1077.14029 · doi:10.1007/978-3-662-05123-8_7
[10] J.-L.Colliot-Thélène, D.Kanevsky and J.-J.Sansuc, Arithmétique des surfaces cubiques diagonales, in Diophantine approximation and transcendence theory (Bonn, 1985), Lecture Notes in Mathematics, vol. 1290 (Springer, Berlin, 1987), 1-108.10.1007/BFb0078705 · Zbl 0639.14018 · doi:10.1007/BFb0078705
[11] J.-L.Colliot-Thélène and J.-J.Sansuc, La R-équivalence sur les tores, Ann. Sci. Éc. Norm. Supér.10 (1977), 175-229. · Zbl 0356.14007
[12] R.de la Bretèche, T. D.Browning and E.Peyre, On Manin’s conjecture for a family of Châtelet surfaces, Ann. of Math. (2)175 (2012), 297-343.10.4007/annals.2012.175.1.8 · Zbl 1237.11018 · doi:10.4007/annals.2012.175.1.8
[13] P.Deligne, La conjecture de Weil, II, Publ. Math. Inst. Hautes Études Sci.52 (1980), 137-252.10.1007/BF02684780 · Zbl 0456.14014 · doi:10.1007/BF02684780
[14] U.Derenthal and D.Wei, Strong approximation and descent, J. Reine Angew. Math., to appear. Preprint (2013), arXiv:1311.3914. · Zbl 1396.11095
[15] T.Ekedahl, An infinite version of the Chinese remainder theorem, Comment. Math. Univ. St. Pauli40 (1991), 53-59.1104780 · Zbl 0749.11004
[16] C.Frei and M.Pieropan, O-minimality on twisted universal torsors and Manin’s conjecture over number fields, Ann. Sci. Éc. Norm. Supér., to appear. Preprint (2013), arXiv:1312.6603. · Zbl 1422.14046
[17] A.Grothendieck, Le groupe de Brauer I, II, III, in Dix exposés sur la cohomologie des schémas (North-Holland, Amsterdam; Masson, Paris, 1968), 88-188. · Zbl 0192.57801
[18] D.Harari, Méthode des fibrations et obstruction de Manin, Duke Math. J.75 (1994), 221-260.10.1215/S0012-7094-94-07507-81284820 · Zbl 0847.14001 · doi:10.1215/S0012-7094-94-07507-8
[19] D.Harari, Flèches de spécialisation en cohomologie étale et applications arithmétiques, Bull. Soc. Math. France125 (1997), 143-166. · Zbl 0906.14014
[20] D.Harari, Weak approximation on algebraic varieties, in Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), Progress in Mathematics, vol. 226 (Birkhäuser, Boston, 2004), 43-60.10.1007/978-0-8176-8170-8_3 · Zbl 1197.11068 · doi:10.1007/978-0-8176-8170-8_3
[21] J.Jahnel and D.Schindler, On the Brauer-Manin obstruction for degree four del Pezzo surfaces, Preprint (2015), arXiv:1503.08292. · Zbl 1368.14035
[22] S.Kleiman, The Picard scheme, in Fundamental algebraic geometry: Grothendieck’s FGA explained, Mathematical Surveys and Monographs, vol. 123 (American Mathematical Society, Providence, RI, 2005).2222646 · Zbl 1085.14001
[23] S.Lang and A.Weil, Number of points of varieties in finite fields, Amer. J. Math.76 (1954), 819-827.10.2307/23726550065218 · Zbl 0058.27202 · doi:10.2307/2372655
[24] D.Loughran, The number of varieties in a family which contain a rational point, J. Eur. Math. Soc. (JEMS), to appear. Preprint (2013), arXiv:1310.6219. · Zbl 1452.14018
[25] D. A.Marcus, Number fields (Springer, New York, 1977).10.1007/978-1-4684-9356-6 · Zbl 0383.12001 · doi:10.1007/978-1-4684-9356-6
[26] J. S.Milne, Étale cohomology (Princeton University Press, Princeton, NJ, 1980). · Zbl 0433.14012
[27] J. S.Milne, Arithmetic duality theorems, second edition (BookSurge, 2006). · Zbl 1127.14001
[28] J.Neukirch, Algebraic number theory (Springer, Berlin, 1999).10.1007/978-3-662-03983-0 · Zbl 0956.11021 · doi:10.1007/978-3-662-03983-0
[29] E.Peyre and Y.Tschinkel, Tamagawa numbers of diagonal cubic surfaces, numerical evidence, Math. Comp.70 (2001), 367-387.10.1090/S0025-5718-00-01189-31681100 · Zbl 0961.14012 · doi:10.1090/S0025-5718-00-01189-3
[30] K. N.Ponomaryov, Semialgebraic sets and variants of the Tarski-Seidenberg-Macintyre theorem, Algebra Logic34 (1995), 182-191.10.1007/BF023418771364472 · Zbl 0935.14034 · doi:10.1007/BF02341877
[31] B.Poonen and M.Stoll, The Cassels-Tate pairing on polarized abelian varieties, Ann. of Math. (2)150 (1999), 1109-1149.10.2307/1210641740984 · Zbl 1024.11040 · doi:10.2307/121064
[32] B.Poonen and J. F.Voloch, Random Diophantine equations, in Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), Progress in Mathematics, vol. 226 (Birkhäuser, Boston, 2004), 175-184.10.1007/978-0-8176-8170-8_11 · Zbl 1208.11050 · doi:10.1007/978-0-8176-8170-8_11
[33] J.Riou, Classes de Chern, morphismes de Gysin, pureté absolue, in Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents (Séminaire à l’École polytechnique 2006-2008), Astérisque, vols. 363-364 (Société Mathématique de France, 2014). · Zbl 1320.14031
[34] S.Schanuel, Heights in number fields, Bull. Soc. Math. France107 (1979), 433-449.0557080 · Zbl 0428.12009
[35] D.Schindler, Manin’s conjecture for certain biprojective hypersurfaces, J. Reine Angew. Math., to appear. Preprint (2013), arXiv:1307.7069. · Zbl 1343.11061
[36] J.-P.Serre, Spécialisation des éléments de Br_2(Q(T_1, …, T_n)), C. R. Acad. Sci. Paris Sér. I Math.311 (1990), 397-402. · Zbl 0711.13002
[37] J.-P.Serre, Lectures on the Mordell-Weil theorem, third edition (F. Vieweg & Sohn, Braunschweig, 1997).10.1007/978-3-663-10632-6 · Zbl 0863.14013 · doi:10.1007/978-3-663-10632-6
[38] A.Grothendieck, Séminaire de géometrie algébrique du Bois-Marie SGA 1: revêtements étales et groupe fondamental, Lecture Notes in Mathematics, vol. 224 (Springer, Berlin, 1961).
[39] P.Deligne, La classe de cohomologie associée à un cycle, in Séminaire de Géometrie Algébrique du Bois-Marie SGA 4½: Cohomologie étale, Lecture Notes in Mathematics, vol. 569 (Springer, Berlin, 1977). · Zbl 0345.00010
[40] A.Skorobogatov, Descent on fibrations over the projective line, Amer. J. Math.118 (1996), 905-923.10.1353/ajm.1996.00451408492 · Zbl 0880.14008 · doi:10.1353/ajm.1996.0045
[41] A.Skorobogatov, Torsors and rational points (Cambridge University Press, Cambridge, 2001).10.1017/CBO9780511549588 · Zbl 0972.14015 · doi:10.1017/CBO9780511549588
[42] P. G.Spain, Lipschitz^2 : a new version of an old principle, Bull. Lond. Math. Soc.27 (1995), 565-566.10.1112/blms/27.6.565 · Zbl 0833.11025 · doi:10.1112/blms/27.6.565
[43] The Stacks Project Authors, Stacks Project (2014), http://stacks.math.columbia.edu.
[44] T.Uematsu, On the Brauer group of diagonal cubic surfaces, Quart. J. Math.65 (2014), 677-701.10.1093/qmath/hat013 · Zbl 1346.14047 · doi:10.1093/qmath/hat013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.