×

Equivariant class group. I: Finite generation of the Picard and the class groups of an invariant subring. (English) Zbl 1348.13010

A locally Krull scheme is a scheme which is locally the prime spectrum of a Krull domain. The present paper studies the equivariant class group of a locally Krull scheme with an action of a flat group scheme. These properties are applied in the proof that the class group of an invariant subring is finitely generated. Since a Noetherian normal domain is a Krull domain, a normal scheme of finite type over a field is a typical example of a (quasi-compact quasi-separated) locally Krull scheme. Although a Krull domain is integrally closed, it may not be Noetherian. In this paper, the author also considers non-affine locally Krull schemes and the equivariant version of the theory of class groups over them.

MSC:

13A50 Actions of groups on commutative rings; invariant theory
13C20 Class groups

References:

[1] Borel, A., Linear Algebraic Groups, Graduate Texts in Math., vol. 126 (1991), Springer · Zbl 0726.20030
[2] Bourbaki, N., Commutative Algebra, Chapters 1-7 (1989), Springer · Zbl 0666.13001
[3] de Jong, J., Stacks project, pdf version · Zbl 1504.14004
[4] Dolgachev, I., Lectures on Invariant Theory, London Math. Soc. Lecture Note Series, vol. 296 (2003), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1023.13006
[5] Elizondo, E. J.; Kurano, K.; Watanabe, K.-i., The total coordinate ring of a normal projective variety, J. Algebra, 276, 625-637 (2004) · Zbl 1074.14006
[6] Fossum, R. M., The Divisor Class Group of a Krull Domain (1973), Springer · Zbl 0256.13001
[7] Grothendieck, A., Eléments de géométrie algébrique I, Publ. Math. Inst. Hautes Études Sci., 4 (1960) · Zbl 0203.23301
[8] Grothendieck, A., Eléments de géométrie algébrique IV, 1e Partie, Publ. Math. Inst. Hautes Études Sci., 20 (1964) · Zbl 0136.15901
[9] Grothendieck, A., Eléments de géométrie algébrique IV, 2e Partie, Publ. Math. Inst. Hautes Études Sci., 24 (1965) · Zbl 0135.39701
[10] Hashimoto, M., Equivariant twisted inverses, (Lipman, J.; Hashimoto, M., Foundations of Grothendieck Duality for Diagrams of Schemes. Foundations of Grothendieck Duality for Diagrams of Schemes, Lect. Notes Pure Appl. Math., vol. 1960 (2009), Springer), 261-478 · Zbl 1467.18020
[11] Hashimoto, M., Equivariant total ring of fractions and factoriality of rings generated by semi-invariants, Comm. Algebra, 43, 1524-1562 (2015) · Zbl 1391.13013
[12] Hashimoto, M., Equivariant class group III. Almost principal fiber bundles
[13] Hashimoto, M.; Ohtani, M., Equivariant Matlis and the local duality, J. Algebra, 324, 1447-1470 (2010) · Zbl 1213.13036
[14] Lipman, J., Notes on derived functors and Grothendieck duality, (Lipman, J.; Hashimoto, M., Foundations of Grothendieck Duality for Diagrams of Schemes. Foundations of Grothendieck Duality for Diagrams of Schemes, Lect. Notes Pure Appl. Math., vol. 1960 (2009), Springer), 1-259 · Zbl 1467.14052
[15] Magid, A. R., Finite generation of class groups of rings of invariants, Proc. Amer. Math. Soc., 60, 45-48 (1976) · Zbl 0344.13004
[16] Matsumura, H., Commutative Ring Theory (1989), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0666.13002
[17] Mukai, S., Geometric realization of \(T\)-shaped root systems and counterexamples to Hilbert’s fourteenth problem, (Algebraic Transformation Groups and Algebraic Varieties (2004), Springer), 123-129 · Zbl 1108.13300
[18] Nagata, M., On the 14th problem of Hilbert, Amer. J. Math., 81, 766-772 (1959) · Zbl 0192.13801
[19] Nagata, M., Local Rings (1975), Krieger, Corrected reprint · Zbl 0386.13010
[20] Reid, M., Canonical 3-Folds, 273-310 (1980), Sijthoff & Noordhoff, Jounée de Géometrie Algébrique d’Angers, Juillet 1979 · Zbl 0451.14014
[21] Rosenlicht, M., Toroidal algebraic groups, Proc. Amer. Math. Soc., 12, 984-988 (1961) · Zbl 0107.14703
[22] Swanson, I.; Huneke, C., Integral Closure of Ideals, Rings, and Modules, London Math. Soc. Lecture Note Series, vol. 336 (2006), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1117.13001
[23] Sweedler, M., A units theorem applied to Hopf algebras and Amitsur cohomology, Amer. J. Math., 92, 259-271 (1970) · Zbl 0198.06002
[24] Vistoli, A., Grothendieck topologies, fibered categories and descent theory, (Fantechi, B.; etal., Fundamental Algebraic Geometry (2005), AMS), 1-104
[25] Waterhouse, W. C., Class groups of rings of invariants, Proc. Amer. Math. Soc., 67, 23-26 (1977) · Zbl 0376.14006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.