×

The discrete collocation method for Fredholm-Hammerstein integral equations based on moving least squares method. (English) Zbl 1347.65195

The authors present a discrete collocation method for Fredholm-Hammerstein integral equations based on moving least squares (MLS) method. They first introduce some basic formulation and properties of the MLS method and then present a computational method for solving \[ u(t)=f(t)+\int_{0}^{1}K(t,s)\psi(s,u(s))ds, \,0<t<1, \] using the MLS method. Error estimates are also given and numerical results are presented to illustrate the theory discussed.

MSC:

65R20 Numerical methods for integral equations
45G10 Other nonlinear integral equations
45B05 Fredholm integral equations
47H30 Particular nonlinear operators (superposition, Hammerstein, Nemytskiĭ, Uryson, etc.)
Full Text: DOI

References:

[1] DOI: 10.1007/s11075-013-9800-1 · Zbl 1311.65163 · doi:10.1007/s11075-013-9800-1
[2] DOI: 10.1017/CBO9780511626340 · doi:10.1017/CBO9780511626340
[3] DOI: 10.1093/imanum/13.2.195 · Zbl 0771.65090 · doi:10.1093/imanum/13.2.195
[4] DOI: 10.1137/0724087 · Zbl 0655.65146 · doi:10.1137/0724087
[5] DOI: 10.1016/j.cam.2008.07.003 · Zbl 1159.65102 · doi:10.1016/j.cam.2008.07.003
[6] DOI: 10.1017/CBO9780511543234 · Zbl 1059.65122 · doi:10.1017/CBO9780511543234
[7] DOI: 10.1016/j.cam.2011.11.022 · Zbl 1243.65154 · doi:10.1016/j.cam.2011.11.022
[8] DOI: 10.1090/S0025-5718-1991-1052097-9 · doi:10.1090/S0025-5718-1991-1052097-9
[9] DOI: 10.1016/S0168-9274(02)00173-3 · Zbl 1019.65106 · doi:10.1016/S0168-9274(02)00173-3
[10] DOI: 10.1007/978-3-642-69409-7 · doi:10.1007/978-3-642-69409-7
[11] DOI: 10.1090/S0025-5718-1987-0878692-4 · doi:10.1090/S0025-5718-1987-0878692-4
[12] DOI: 10.1016/j.apm.2011.10.005 · Zbl 1252.65212 · doi:10.1016/j.apm.2011.10.005
[13] DOI: 10.1090/S0025-5718-1981-0616367-1 · doi:10.1090/S0025-5718-1981-0616367-1
[14] DOI: 10.1016/j.apnum.2009.12.003 · Zbl 1202.65174 · doi:10.1016/j.apnum.2009.12.003
[15] DOI: 10.1093/imanum/drr030 · Zbl 1252.65037 · doi:10.1093/imanum/drr030
[16] DOI: 10.1006/jmaa.1995.1199 · Zbl 0851.45003 · doi:10.1006/jmaa.1995.1199
[17] DOI: 10.1016/j.cam.2013.02.005 · Zbl 1285.65080 · doi:10.1016/j.cam.2013.02.005
[18] DOI: 10.1016/j.apnum.2013.03.001 · Zbl 1284.65137 · doi:10.1016/j.apnum.2013.03.001
[19] Tricomi F.G., Integral Equations (1982)
[20] DOI: 10.1016/0041-5553(67)90140-1 · Zbl 0213.16201 · doi:10.1016/0041-5553(67)90140-1
[21] Wendland H., Scattered Data Approximation (2005) · Zbl 1075.65021
[22] DOI: 10.1007/s00574-003-0010-7 · Zbl 1056.41007 · doi:10.1007/s00574-003-0010-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.