×

Solutions to uncertain Volterra integral equations by fitted reproducing kernel Hilbert space method. (English) Zbl 1347.65194

Summary: We present an efficient modern strategy for solving some well-known classes of uncertain integral equations arising in engineering and physics fields. The solution methodology is based on generating an orthogonal basis upon the obtained kernel function in the Hilbert space \(W_2^1 \left[a, b\right]\) in order to formulate the analytical solutions in a rapidly convergent series form in terms of their \(\alpha\)-cut representation. The approximation solution is expressed by \(n\)-term summation of reproducing kernel functions and it is convergent to the analytical solution. Our investigations indicate that there is excellent agreement between the numerical results and the reproducing kernel Hilbert space (RKHS) method, which is applied to some computational experiments to demonstrate the validity, performance, and superiority of the method. The present work shows the potential of the RKHS technique in solving such uncertain integral equations.

MSC:

65R20 Numerical methods for integral equations
45D05 Volterra integral equations
46E22 Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces)
26E50 Fuzzy real analysis

References:

[1] Hanss, M., Applied Fuzzy Arithmetic: An Introduction with Engineering Applications (2005), Berlin, Germany: Springer, Berlin, Germany · Zbl 1085.03041
[2] Hüllermeier, E., An approach to modelling and simulation of uncertain dynamical systems, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 5, 2, 117-137 (1997) · Zbl 1232.68131 · doi:10.1142/s0218488597000117
[3] Barro, S.; Marın, R., Fuzzy Logic in Medicine (2002), Heidelberg, Germany: Physica, Heidelberg, Germany · Zbl 0978.68780
[4] Mosleh, M., Fuzzy neural network for solving a system of fuzzy differential equations, Applied Soft Computing, 13, 8, 3597-3607 (2013) · doi:10.1016/j.asoc.2013.04.013
[5] Guo, M.; Xue, X.; Li, R., Impulsive functional differential inclusions and fuzzy population models, Fuzzy Sets and Systems, 138, 3, 601-615 (2003) · Zbl 1084.34072 · doi:10.1016/s0165-0114(02)00522-5
[6] Zhang, H.; Liao, X.; Yu, J., Fuzzy modeling and synchronization of hyperchaotic systems, Chaos, Solitons and Fractals, 26, 3, 835-843 (2005) · Zbl 1093.93540 · doi:10.1016/j.chaos.2005.01.023
[7] El Naschie, M. S., From experimental quantum optics to quantum gravity via a fuzzy Kähler manifold, Chaos, Solitons & Fractals, 25, 5, 969-977 (2005) · Zbl 1070.81118 · doi:10.1016/j.chaos.2005.02.028
[8] Diamond, P., Time-dependent differential inclusions, cocycle attractors and fuzzy differential equations, IEEE Transactions on Fuzzy Systems, 7, 6, 734-740 (1999) · doi:10.1109/91.811243
[9] Feng, G.; Chen, G., Adaptive control of discrete-time chaotic systems: a fuzzy control approach, Chaos, Solitons and Fractals, 23, 2, 459-467 (2005) · Zbl 1061.93501 · doi:10.1016/j.chaos.2004.04.013
[10] Bencsik, A.; Bede, B.; Tar, J.; Fodor, J., Fuzzy differential equations in modeling hydraulic differential servo cylinders, Proceedings of the 3rd Romanian-Hungarian Joint Symposium on Applied Computational Intelligence (SACI ’06)
[11] Ghanbari, M., Numerical solution of fuzzy linear Volterra integral equations of the second kind by Homotopy analysis method, International Journal Industrial Mathematics, 2, 73-87 (2010)
[12] Abbasbandy, S.; Allahviranloo, T., The Adomian decomposition method applied to the fuzzy system of Fredholm integral equations of the second kind, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 14, 1, 101-110 (2006) · Zbl 1090.65144 · doi:10.1142/S0218488506003868
[13] Attari, H.; Yazdani, A., A computational method for fuzzy Volterra-Fredholm integral equations, Fuzzy Information Engineering, 2, 147-156 (2011) · Zbl 1255.65234
[14] Faborzi Araghi, M. A.; Parandin, N., Numerical solution of fuzzy Fredholm integral equations by the Lagrange interpolation based on the extension principle, Soft Computing, 15, 12, 2449-2456 (2011) · Zbl 1244.65240 · doi:10.1007/s00500-011-0706-3
[15] Salahshour, S.; Allahviranloo, T., Application of fuzzy differential transform method for solving fuzzy Volterra integral equations, Applied Mathematical Modelling, 37, 3, 1016-1027 (2013) · Zbl 1351.45005 · doi:10.1016/j.apm.2012.03.031
[16] Salahshour, S.; Khezerloo, M.; Hajighasemi, S.; Khorasany, M., Solving fuzzy integral equations of the second kind by fuzzy Laplace transform method, International Journal Industrial Mathematics, 1, 21-29 (2012) · Zbl 1201.45008
[17] Bica, A. M.; Popescu, C., Numerical solutions of the nonlinear fuzzy Hammerstein-Volterra delay integral equations, Information Sciences, 223, 236-255 (2013) · Zbl 1293.65168 · doi:10.1016/j.ins.2012.10.022
[18] Park, J. Y.; Han, H. K., Existence and uniqueness theorem for a solution of fuzzy Volterra integral equations, Fuzzy Sets and Systems, 105, 3, 481-488 (1999) · Zbl 0934.45001 · doi:10.1016/s0165-0114(97)00238-8
[19] Geng, F. Z.; Qian, S. P.; Cui, M. G., Improved reproducing kernel method for singularly perturbed differential-difference equations with boundary layer behavior, Applied Mathematics and Computation, 252, 58-63 (2015) · Zbl 1338.34117 · doi:10.1016/j.amc.2014.11.106
[20] Arqub, O. A.; Al-Smadi, M.; Shawagfeh, N., Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method, Applied Mathematics and Computation, 219, 17, 8938-8948 (2013) · Zbl 1288.65181 · doi:10.1016/j.amc.2013.03.006
[21] Komashynska, I.; AL-Smadi, M., Iterative reproducing kernel method for solving second-order integrodifferential equations of Fredholm type, Journal of Applied Mathematics, 2014 (2014) · Zbl 1442.65458 · doi:10.1155/2014/459509
[22] Abu Arqub, O.; Al-Smadi, M.; Momani, S., Application of reproducing kernel method for solving nonlinear Fredholm-Volterra integro-differential equations, Abstract and Applied Analysis, 2012 (2012) · Zbl 1253.65200 · doi:10.1155/2012/839836
[23] Al-Smadi, M.; Abu Arqub, O.; Momani, S., A computational method for two-point boundary value problems of fourth-order mixed integrodifferential equations, Mathematical Problems in Engineering, 2013 (2013) · Zbl 1299.65297 · doi:10.1155/2013/832074
[24] Abu Arqub, O.; Al-Smadi, M., Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations, Applied Mathematics and Computation, 243, 911-922 (2014) · Zbl 1337.65083 · doi:10.1016/j.amc.2014.06.063
[25] Al-Smadi, M.; Abu Arqub, O.; El-Ajou, A., A numerical iterative method for solving systems of first-order periodic boundary value problems, Journal of Applied Mathematics, 2014 (2014) · Zbl 1406.65050 · doi:10.1155/2014/135465
[26] Al-Smadi, M.; Abu Arqub, O.; Shawagfeh, N., Approximate solution of BVPs for 4th-order IDEs by using RKHS method, Applied Mathematical Sciences, 6, 50, 2453-2464 (2012) · Zbl 1264.45012
[27] Goetschel, R.; Voxman, W., Elementary fuzzy calculus, Fuzzy Sets and Systems, 18, 1, 31-43 (1986) · Zbl 0626.26014 · doi:10.1016/0165-0114(86)90026-6
[28] Kaleva, O., Fuzzy differential equations, Fuzzy Sets and Systems, 24, 3, 301-317 (1987) · Zbl 0646.34019 · doi:10.1016/0165-0114(87)90029-7
[29] Abu Arqub, O.; Al-Smadi, M.; Momani, S.; Hayat, T., Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method, Soft Computing (2015) · Zbl 1377.65079 · doi:10.1007/s00500-015-1707-4
[30] Park, J. Y.; Jeong, J. U., A note on fuzzy integral equations, Fuzzy Sets and Systems, 108, 2, 193-200 (1999) · Zbl 0947.45001 · doi:10.1016/s0165-0114(97)00331-x
[31] Puri, M. L.; Ralescu, D. A., Fuzzy random variables, Journal of Mathematical Analysis and Applications, 114, 2, 409-422 (1986) · Zbl 0592.60004 · doi:10.1016/0022-247X(86)90093-4
[32] Puri, M. L.; Ralescu, D. A., Differentials of fuzzy functions, Journal of Mathematical Analysis and Applications, 91, 2, 552-558 (1983) · Zbl 0528.54009 · doi:10.1016/0022-247X(83)90169-5
[33] Geng, F., Solving singular second order three-point boundary value problems using reproducing kernel Hilbert space method, Applied Mathematics and Computation, 215, 6, 2095-2102 (2009) · Zbl 1178.65085 · doi:10.1016/j.amc.2009.08.002
[34] Geng, F., A new reproducing kernel Hilbert space method for solving nonlinear fourth-order boundary value problems, Applied Mathematics and Computation, 213, 1, 163-169 (2009) · Zbl 1166.65358 · doi:10.1016/j.amc.2009.02.053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.