×

Optimal shrinkage estimation of mean parameters in family of distributions with quadratic variance. (English) Zbl 1347.60017

Summary: This paper discusses the simultaneous inference of mean parameters in a family of distributions with quadratic variance function. We first introduce a class of semiparametric/parametric shrinkage estimators and establish their asymptotic optimality properties. Two specific cases, the location-scale family and the natural exponential family with quadratic variance function, are then studied in detail. We conduct a comprehensive simulation study to compare the performance of the proposed methods with existing shrinkage estimators. We also apply the method to real data and obtain encouraging results.

MSC:

60F05 Central limit and other weak theorems
62F12 Asymptotic properties of parametric estimators
65C60 Computational problems in statistics (MSC2010)

Software:

mixfdr

References:

[1] Berger, J. O. and Strawderman, W. E. (1996). Choice of hierarchical priors: Admissibility in estimation of normal means. Ann. Statist. 24 931-951. · Zbl 0865.62004 · doi:10.1214/aos/1032526950
[2] Berry, D. A. and Christensen, R. (1979). Empirical Bayes estimation of a binomial parameter via mixtures of Dirichlet processes. Ann. Statist. 7 558-568. · Zbl 0407.62018 · doi:10.1214/aos/1176344677
[3] Brown, L. D. (1966). On the admissibility of invariant estimators of one or more location parameters. Ann. Math. Statist 37 1087-1136. · Zbl 0156.39401 · doi:10.1214/aoms/1177699259
[4] Brown, L. D. (2008). In-season prediction of batting averages: A field test of empirical Bayes and Bayes methodologies. Ann. Appl. Stat. 2 113-152. · Zbl 1137.62419 · doi:10.1214/07-AOAS138supp
[5] Brown, L. D. and Greenshtein, E. (2009). Nonparametric empirical Bayes and compound decision approaches to estimation of a high-dimensional vector of normal means. Ann. Statist. 37 1685-1704. · Zbl 1166.62005 · doi:10.1214/08-AOS630
[6] Clevenson, M. L. and Zidek, J. V. (1975). Simultaneous estimation of the means of independent Poisson laws. J. Amer. Statist. Assoc. 70 698-705. · Zbl 0308.62018 · doi:10.2307/2285958
[7] Efron, B. and Morris, C. N. (1975). Data analysis using Stein’s estimator and its generalizations. J. Amer. Statist. Assoc. 70 311-319. · Zbl 0319.62039 · doi:10.2307/2285453
[8] Efron, B. (2004). The estimation of prediction error: Covariance penalties and cross-validation. J. Amer. Statist. Assoc. 99 619-642. · Zbl 1117.62324 · doi:10.1198/016214504000000692
[9] Efron, B. and Morris, C. (1972). Empirical Bayes on vector observations: An extension of Stein’s method. Biometrika 59 335-347. · Zbl 0238.62072 · doi:10.1093/biomet/59.2.335
[10] Efron, B. and Morris, C. (1973). Stein’s estimation rule and its competitors-An empirical Bayes approach. J. Amer. Statist. Assoc. 68 117-130. · Zbl 0275.62005 · doi:10.2307/2284155
[11] Gelman, A. and Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models . Cambridge Univ. Press, Cambridge.
[12] Green, J. and Strawderman, W. E. (1985). The use of Bayes/empirical Bayes estimation in individual tree volume development. Forest Science 31 975-990.
[13] Gutmann, S. (1982). Stein’s paradox is impossible in problems with finite sample space. Ann. Statist. 10 1017-1020. · Zbl 0545.62009 · doi:10.1214/aos/1176345893
[14] Hwang, J. T. (1982). Improving upon standard estimators in discrete exponential families with applications to Poisson and negative binomial cases. Ann. Statist. 10 857-867. · Zbl 0493.62008 · doi:10.1214/aos/1176345876
[15] James, W. and Stein, C. (1961). Estimation with quadratic loss. In Proc. 4 th Berkeley Sympos. Math. Statist. and Prob. , Vol. I 361-379. Univ. California Press, Berkeley, CA. · Zbl 1281.62026
[16] Jiang, W. and Zhang, C.-H. (2009). General maximum likelihood empirical Bayes estimation of normal means. Ann. Statist. 37 1647-1684. · Zbl 1168.62005 · doi:10.1214/08-AOS638
[17] Jiang, W. and Zhang, C.-H. (2010). Empirical Bayes in-season prediction of baseball batting averages. In Borrowing Strength : Theory Powering Applications-A Festschrift for Lawrence D. Brown. Inst. Math. Stat. Collect. 6 263-273. IMS, Beachwood, OH.
[18] Johnstone, I. (1984). Admissibility, difference equations and recurrence in estimating a Poisson mean. Ann. Statist. 12 1173-1198. · Zbl 0557.62006 · doi:10.1214/aos/1176346786
[19] Jones, K. (1991). Specifying and estimating multi-level models for geographical research. Transactions of the Institute of British Geographers 16 148-159.
[20] Koenker, R. and Mizera, I. (2014). Convex optimization, shape constraints, compound decisions, and empirical Bayes rules. J. Amer. Statist. Assoc. 109 674-685. · Zbl 1367.62020 · doi:10.1080/01621459.2013.869224
[21] Li, K.-C. (1986). Asymptotic optimality of \(C_{L}\) and generalized cross-validation in ridge regression with application to spline smoothing. Ann. Statist. 14 1101-1112. · Zbl 0629.62043 · doi:10.1214/aos/1176350052
[22] Morris, C. N. (1982). Natural exponential families with quadratic variance functions. Ann. Statist. 10 65-80. · Zbl 0498.62015 · doi:10.1214/aos/1176345690
[23] Morris, C. N. (1983). Parametric empirical Bayes inference: Theory and applications. J. Amer. Statist. Assoc. 78 47-65. · Zbl 0506.62005 · doi:10.2307/2287098
[24] Mosteller, F. and Wallace, D. L. (1964). Inference and Disputed Authorship : The Federalist . Addison-Wesley, Reading, MA. · Zbl 0122.14106
[25] Muralidharan, O. (2010). An empirical Bayes mixture method for effect size and false discovery rate estimation. Ann. Appl. Statist. 4 422-438. · Zbl 1189.62004 · doi:10.1214/09-AOAS276
[26] Rubin, D. (1981). Using empirical Bayes techniques in the law school validity studies. J. Amer. Statist. Assoc. 75 801-827.
[27] Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability , 1954 - 1955, Vol. I 197-206. Univ. California Press, Berkeley, CA. · Zbl 0073.35602
[28] Xie, X., Kou, S. C. and Brown, L. D. (2012). SURE estimates for a heteroscedastic hierarchical model. J. Amer. Statist. Assoc. 107 1465-1479. · Zbl 1284.62450 · doi:10.1080/01621459.2012.728154
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.