×

A generalized reverse Cauchy inequality for matrices. (English) Zbl 1347.15028

Let \(A,B\geq 0\) (i.e., \(A\) and \(B\) are nonnegative definite matrices of the same dimension) satisfy \(AB+BA\geq 0\), and let \(f\) be an operator monotone function on \([0,\infty)\). Denote \[ A\,\sigma_f\,B=A^\frac{1}{2}f(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})A^\frac{1}{2} \] if \(A,B>0\), and \[ A\,\sigma_f\,B=\lim_{\varepsilon\to 0}(A+\varepsilon I)\sigma_f(B+\varepsilon I) \] otherwise. The authors prove that if \(f\) is positive and \(f(1)=1\), then \[ A+B-|A-B|\leq 2\,A\,\sigma_f\,B. \] The reverse Cauchy inequality for positive definite matrices \[ \frac{A+B}{2}\leq A^\frac{1}{2}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^\frac{1}{2}A^\frac{1}{2}+ \frac{|A-B|}{2} \] is so extended. Define \(g(t)=t/f(t)\) for \(t>0\), and \(g(0)=0\). The authors also prove that if \(f(0)=0\) and \(f(t)>0\) for all \(t>0\), then \[ \|A+B-|A-B|\|\leq 2\,\|f(A)^\frac{1}{2}g(B)f(A)^\frac{1}{2}\| \] for any unitarily invariant norm \(\|\cdot\|\). The generalized Powers-Størmer inequality \[ \mathrm{tr}(A+B-|A-B|)\leq 2\,\mathrm{tr}\,(f(A)^\frac{1}{2}g(B)f(A)^\frac{1}{2}), \] proved by the first author et al. [Linear Algebra Appl. 438, 242–249 (2013; Zbl 1270.46057)], is so extended.

MSC:

15A45 Miscellaneous inequalities involving matrices
15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory
15B48 Positive matrices and their generalizations; cones of matrices

Citations:

Zbl 1270.46057
Full Text: DOI

References:

[1] DOI: 10.1016/j.jmaa.2009.08.059 · Zbl 1180.15021 · doi:10.1016/j.jmaa.2009.08.059
[2] DOI: 10.1016/j.joems.2011.12.010 · Zbl 1287.47031 · doi:10.1016/j.joems.2011.12.010
[3] DOI: 10.1103/PhysRevLett.98.160501 · doi:10.1103/PhysRevLett.98.160501
[4] DOI: 10.1016/j.laa.2012.07.053 · Zbl 1270.46057 · doi:10.1016/j.laa.2012.07.053
[5] DOI: 10.1080/03081087.2011.574624 · Zbl 1232.81010 · doi:10.1080/03081087.2011.574624
[6] DOI: 10.1007/BF01371042 · Zbl 0412.47013 · doi:10.1007/BF01371042
[7] Fujii JI, Math. Inequal. Appl 9 pp 749– (2006)
[8] DOI: 10.2140/pjm.1993.161.385 · Zbl 0807.47013 · doi:10.2140/pjm.1993.161.385
[9] DOI: 10.1080/03081087.2014.954571 · Zbl 1320.47014 · doi:10.1080/03081087.2014.954571
[10] DOI: 10.1016/j.laa.2003.11.019 · Zbl 1063.47013 · doi:10.1016/j.laa.2003.11.019
[11] DOI: 10.1090/S0025-5718-09-02261-3 · Zbl 1194.65065 · doi:10.1090/S0025-5718-09-02261-3
[12] DOI: 10.1016/j.laa.2011.01.026 · Zbl 1220.26024 · doi:10.1016/j.laa.2011.01.026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.