×

Logarithmic uncertainty relations for odd or even signals associate with Wigner-Ville distribution. (English) Zbl 1346.94018

Summary: Heisenberg’s uncertainty relation is a basic principle in the applied mathematics and signal processing community. The logarithmic uncertainty relation, which is a more general form of Heisenberg’s uncertainty relation, describes the relationship between a function and its Fourier transform. In this paper, we consider several logarithmic uncertainty relations for a odd or even signal \(f(t)\) related to the Wigner-Ville distribution and the linear canonical transform. First, the logarithmic uncertainty relations associated with the Wigner-Ville distribution of a signal \(f(t)\) based on the Fourier transform are obtained. We then generalize the logarithmic uncertainty relation to the linear canonical transform domain and derive a number of theorems relating to the Wigner-Ville distribution and the ambiguity function; finally, the logarithmic uncertainty relations are obtained for the Wigner-Ville distribution associated with the linear canonical transform. We present an example in which the theorems derived in this paper can be used to provide an estimation for a practical signal.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
94A11 Application of orthogonal and other special functions
Full Text: DOI

References:

[1] R.F. Bai, B.Z. Li, Q.Y. Cheng, Wigner-Ville distribution associated with the linear canonical transform. J. Appl. Math. 2012, 1-14 (2012) · Zbl 1251.94012
[2] W. Beckner, Pitt’s inequality and the uncertainty principle. Proc. Am. Math. Soc. 123, 1897-1905 (1995) · Zbl 0842.58077
[3] B. Boashash, Time Frequency Analysis (Elsevier, Amsterdam, 2003) · Zbl 1041.94510
[4] W.T. Che, B.Z. Li, T.Z. Xu, The ambiguity function associated with the liner canonical transform. EURASIP J. Adv. Signal Process 2012(1), 138 (2012)
[5] G. Chen, J. Chen, G.M. Dong, Chirplet Wigner-Ville distribution for time-frequency representation and its application. Mech. Syst. Signal Process. 41, 1-13 (2013) · doi:10.1016/j.ymssp.2013.08.010
[6] L. Cohen, Time-Frequency Analysis (Prentice-Hall, New York, 1995)
[7] L. Debnath, Recent developments in the Wigner-Ville distribution and time-frequency signal analysis. Proc. Indian Natl. Sci. Acad. Phys. Sci. 68, 35-56 (2002) · Zbl 1229.94016
[8] J.J. Ding, S.C. Pei, Heisenberg’s uncertainty principles for the 2-D nonseparable linear canonical transforms. Signal Process. 93, 1027-1043 (2013) · doi:10.1016/j.sigpro.2012.11.023
[9] D. Ding, Z. Wang, B. Shen, H. Dong, Envelope-constrained H filtering with fading measurements and randomly occurring nonlinearities: the finite horizon case. Automatica 55, 37-45 (2015) · Zbl 1378.93125 · doi:10.1016/j.automatica.2015.02.024
[10] G.B. Folland, A. Sitaram, The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3, 207-238 (1997) · Zbl 0885.42006 · doi:10.1007/BF02649110
[11] R.C. Harney, A method for obtaining force law information by applying the Heisenberg uncertainty principle. Am. J. Phys. 41, 67-70 (1973) · doi:10.1119/1.1987122
[12] A. K. Khitrin, A quantitative aspect of the Heisenberg uncertainty (2012, preprint). arXiv:1206.1576
[13] Y.G Li, B.Z Li, H.F. Sun, Uncertainty principles for Wigner-Ville distribution associated with the linear canonical transforms. Abstr. Appl. Anal. 2014, 1-9 (2014) · Zbl 1472.42009
[14] C.P. Li, B.Z. Li, T.Z. Xu, Approximating bandlimited signals associated with the LCT domain from nonuniform samples at unknown locations. Signal Process. 92, 1658-1664 (2012) · doi:10.1016/j.sigpro.2011.12.024
[15] A. Ouakasse, G. Melard, On-line estimation of ARMA models using Fisher-scoring. Syst. Sci. Control Eng. Open Access J. 2(1), 406-432 (2014) · doi:10.1080/21642583.2014.912572
[16] S.C. Pei, J.J. Ding, Relations between fractional operations and time-frequency distributions, and their applications. IEEE Trans. Signal Process. 49, 1638-1655 (2001) · Zbl 1369.94258 · doi:10.1109/78.934134
[17] B. Shen, Z. Wang, H. Shu, G. Wei, Robust H finite-horizon filtering with randomly occurred nonlinearities and quantization effects. Automatica 46(11), 1743-1751 (2010) · Zbl 1218.93103 · doi:10.1016/j.automatica.2010.06.041
[18] K.K. Sharma, S.D. Joshi, Uncertainty principles for real signals in linear canonical transform domains. IEEE Trans. Signal Process. 56, 2677-2683 (2008) · Zbl 1390.94407 · doi:10.1109/TSP.2008.917384
[19] E.K. Stelzer, S. Grill, The uncertainty principle applied to estimate focal spot dimensions. Opt. Commun. 173, 51-56 (2000) · doi:10.1016/S0030-4018(99)00644-6
[20] K.B. Wolf, Integral Transforms in Science and Engineering (Plenum Press, New York, 1979) · Zbl 0409.44001 · doi:10.1007/978-1-4757-0872-1
[21] L. Weiss, Wavelets and wideband correlation processing. IEEE Signal Process. Mag. 11(1), 13-32 (1994) · doi:10.1109/79.252866
[22] D. Wei, Q. Ran, Y. Li, Reconstruction of band-limited signals from multichannel and periodic nonuniform samples in the linear canonical transform domain. Opt. Commun. 284, 4307-4315 (2011) · doi:10.1016/j.optcom.2011.05.010
[23] T.Z. Xu, B.Z. Li, Linear Canonical Transform and Its Applications (Science Press, Beijing, 2013)
[24] G.L. Xu, X.T. Wang, X.G. Xu, Generalized Hilbert transform and its properties in 2D LCT domain. Signal Process. 89, 1395-1402 (2009) · Zbl 1178.94039 · doi:10.1016/j.sigpro.2009.04.038
[25] G.L. Xu, X.T. Wang, X.G. Xu, Three uncertainty relations for real signals associated with linear canonical transform. IET Signal Proc. 3, 85-92 (2009) · doi:10.1049/iet-spr:20080019
[26] G.L. Xu, X.T. Wang, X.G. Xu, Uncertainty inequalities for linear canonical transform. IET Signal Proc. 3, 392-402 (2009) · doi:10.1049/iet-spr.2008.0102
[27] J. Zhao, R. Tao, Y. Wang, On signal moments and uncertainty relations associated with linear canonical transform. Signal Process. 90, 2686-2689 (2010) · Zbl 1194.94162 · doi:10.1016/j.sigpro.2010.03.017
[28] J. Zhao, R. Tao, Y.L. Li, Y. Wang, Uncertainty principles for linear canonical transform. IEEE Trans. Signal Process. 57, 2856-2858 (2009) · Zbl 1391.44002 · doi:10.1109/TSP.2009.2020039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.