×

Implementation on electronic circuits and RTR pragmatical adaptive synchronization: time-reversed uncertain dynamical systems’ analysis and applications. (English) Zbl 1346.93214

Summary: We expose the chaotic attractors of a time-reversed nonlinear system, further implement its behavior on an electronic circuit, and apply the pragmatical asymptotically stability theory to strictly prove that the adaptive synchronization of given master and slave systems with uncertain parameters can be achieved. In this paper, the variety chaotic motions of time-reversed Lorentz system are investigated through Lyapunov exponents, phase portraits, and bifurcation diagrams. For further applying the complex signal in secure communication and file encryption, we construct the circuit to show the similar chaotic signal of time-reversed Lorentz system. In addition, pragmatical asymptotically stability theorem and an assumption of equal probability for ergodic initial conditions [Z. M. Ge et al., “Pragmatical asymptotical stability theorem with application to satellite system,” Japanese J. Appl. Phys. 38, No. 10, 6178–6179 (1999); Z. M. Ge and J. K. Yu, “Pragmatical asymptotical stability theorems on partial region and for partial variables with applications to gyroscopic systems,” J. Mech. 16, No. 4, 179–187 (2000); Y. Matsushima, Differentiable manifolds. New York: Marcel Dekker (1972; Zbl 0233.58001)] are proposed to strictly prove that adaptive control can be accomplished successfully. The current scheme of adaptive control-by traditional Lyapunov stability theorem and Barbalat lemma, which are used to prove the error vector-approaches zero, as time approaches infinity. However, the core question – why the estimated or given parameters also approach to the uncertain parameters – remains without answer. By the new stability theory, those estimated parameters can be proved approaching the uncertain values strictly, and the simulation results are shown in this paper.

MSC:

93C40 Adaptive control/observation systems
93D20 Asymptotic stability in control theory
94C05 Analytic circuit theory
37N35 Dynamical systems in control

Citations:

Zbl 0233.58001

References:

[1] Chowdhury, M. S. H.; Hashim, I.; Momani, S.; Rahman, M. M., Application of multistage homotopy perturbation method to the chaotic genesio system, Abstract and Applied Analysis, 2012 (2012) · Zbl 1246.65241 · doi:10.1155/2012/974293
[2] Luo, H., Global attractor of atmospheric circulation equations with humidity effect, Abstract and Applied Analysis, 2012 (2012) · Zbl 1246.86012 · doi:10.1155/2012/172956
[3] Li, S. Y.; Ge, Z. M., Generating tri-chaos attractors with three positive Lyapunov exponents in new four order system via linear coupling, Nonlinear Dynamics, 69, 3, 805-816 (2012) · doi:10.1007/s11071-011-0306-x
[4] Yang, C. H.; Chen, T. W.; Li, S. Y.; Chang, C. M.; Ge, Z. M., Chaos generalized synchronization of an inertial tachometer with new Mathieu-Van der Pol systems as functional system by GYC partial region stability theory, Communications in Nonlinear Science and Numerical Simulation, 17, 3, 1355-1371 (2012) · Zbl 1250.34044 · doi:10.1016/j.cnsns.2011.07.008
[5] Li, S. Y.; Yang, C. H.; Chen, S. A.; Ko, L. W.; Lin, C. T., Fuzzy adaptive synchronization of time-reversed chaotic systems via a new adaptive control strategy, Information Sciences, 222, 10, 486-500 (2013) · Zbl 1293.93455 · doi:10.1016/j.ins.2012.08.007
[6] Wu, R.; Li, X., Hopf bifurcation analysis and anticontrol of Hopf circles of the Rössler-like system, Abstract and Applied Analysis, 2012, 16 (2012) · Zbl 1253.34050 · doi:10.1155/2012/341870
[7] Freihat, A.; Momani, S., Adaptation of differential transform method for the numeric-analytic solution of fractional-order Rössler chaotic and hyperchaotic systems, Abstract and Applied Analysis, 2012 (2012) · Zbl 1237.37058 · doi:10.1155/2012/934219
[8] Ge, Z. M.; Li, S. Y., Chaos generalized synchronization of new Mathieu-Van der Pol systems with new Duffing-Van der Pol systems as functional system by GYC partial region stability theory, Applied Mathematical Modelling, 35, 11, 5245-5264 (2011) · Zbl 1228.93097 · doi:10.1016/j.apm.2011.03.022
[9] Ge, Z. M.; Li, S. Y., Chaos control of new Mathieu-Van der Pol systems with new Mathieu-Duffing systems as functional system by GYC partial region stability theory, Nonlinear Analysis, Theory, Methods and Applications, 71, 9, 4047-4059 (2009) · Zbl 1176.34072 · doi:10.1016/j.na.2009.02.095
[10] Yin, C.; Zhong, S. M.; Chen, W. F., Design of sliding mode controller for a class of fractional-order chaotic systems, Communications in Nonlinear Science and Numerical Simulation, 17, 1, 356-366 (2012) · Zbl 1248.93041 · doi:10.1016/j.cnsns.2011.04.024
[11] Zhao, J., Adaptive Q-S synchronization between coupled chaotic systems with stochastic perturbation and delay, Applied Mathematical Modelling, 36, 7, 3312-3319 (2012) · Zbl 1252.93072 · doi:10.1016/j.apm.2011.10.029
[12] Villegas, M.; Augustin, F.; Gilg, A.; Hmaidi, A.; Wever, U., Application of the polynomial chaos expansion to the simulation of chemical reactors with uncertainties, Mathematics and Computers in Simulation, 82, 5, 805-817 (2012) · Zbl 1242.65015 · doi:10.1016/j.matcom.2011.12.001
[13] Pérez-Polo, M. F.; Pérez-Molina, M., Saddle-focus bifurcation and chaotic behavior of a continuous stirred tank reactor using PI control, Chemical Engineering Science, 74, 28, 79-92 (2012) · doi:10.1016/j.ces.2012.02.031
[14] Baek, H., The dynamics of a predator-prey system with state-dependent feedback control, Abstract and Applied Analysis, 2012 (2012) · Zbl 1243.34061 · doi:10.1155/2012/101386
[15] Camara, B. I.; Mokrani, H., Analysis of wave solutions of an adhenovirus-tumor cell system, Abstract and Applied Analysis, 2012 (2012) · Zbl 1237.35156 · doi:10.1155/2012/590326
[16] Yuan, X.; Hwarng, H. B., Managing a service system with social interactions: stability and chaos, Computers & Industrial Engineering, 63, 4, 1178-1188 (2012) · doi:10.1016/j.cie.2012.06.022
[17] Wang, T.; Jia, N.; Wang, K., A novel GCM chaotic neural network for information processing, Communications in Nonlinear Science and Numerical Simulation, 17, 12, 4846-4855 (2012) · Zbl 1302.92017 · doi:10.1016/j.cnsns.2012.05.011
[18] Machicao, J.; Marco, A. G.; Bruno, O. M., Chaotic encryption method based on life-like cellular automata, Expert Systems with Applications, 39, 16, 12626-12635 (2012) · doi:10.1016/j.eswa.2012.05.020
[19] Juan, M. M.; Rafael, L. M. G.; Ricardo, A. L.; Carlos, A. I., A chaotic system in synchronization and secure communications, Communications in Nonlinear Science and Numerical Simulation, 17, 4, 1706-1713 (2012) · doi:10.1016/j.cnsns.2011.08.026
[20] Hou, Y. Y.; Chen, H. C.; Chang, J. F.; Yan, J. J.; Liao, T. L., Design and implementation of the Sprott chaotic secure digital communication systems, Applied Mathematics and Computation, 218, 24, 11799-11791 (1805)
[21] Cheng, C.-J., Robust synchronization of uncertain unified chaotic systems subject to noise and its application to secure communication, Applied Mathematics and Computation, 219, 5, 2698-2712 (2012) · Zbl 1308.94065 · doi:10.1016/j.amc.2012.08.101
[22] Lorenz, E. N., Deterministic non-periodic flows, Journal of the Atmospheric Science, 20, 2, 130-141 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[23] Li, S.; Li, Y. M.; Liu, B.; Murray, T., Model-free control of Lorenz chaos using an approximate optimal control strategy, Communications in Nonlinear Science and Numerical Simulation, 17, 12, 4891-4900 (2012) · Zbl 1352.34090 · doi:10.1016/j.cnsns.2012.05.024
[24] Cafagna, D.; Grassi, G., On the simplest fractional-order memristor-based chaotic system, Nonlinear Dynamics, 70, 2, 1185-1197 (2012) · doi:10.1007/s11071-012-0522-z
[25] Bi, Q.; Zhang, Z., Bursting phenomena as well as the bifurcation mechanism in controlled Lorenz oscillator with two time scales, Physics Letters A, 375, 8, 1183-1190 (2011) · Zbl 1242.34058 · doi:10.1016/j.physleta.2011.01.037
[26] Özkaynak, F.; Özer, A. B., A method for designing strong S-Boxes based on chaotic Lorenz system, Physics Letters A, 374, 36, 3733-3738 (2010) · Zbl 1238.34085 · doi:10.1016/j.physleta.2010.07.019
[27] Vaněček, A.; Čelikovský, S., Control Systems: From Linear Analysis to Synthesis of Chaos (1996), London, UK: Prentice-Hall, London, UK · Zbl 0874.93006
[28] El-Gohary, A.; Bukhari, F., Optimal control of Lorenz system during different time intervals, Applied Mathematics and Computation, 144, 2-3, 337-351 (2003) · Zbl 1036.49028 · doi:10.1016/S0096-3003(02)00411-3
[29] Ge, Z. M.; Chen, C. C., Phase synchronization of coupled chaotic multiple time scales systems, Chaos, Solitons & Fractals, 20, 3, 639-647 (2004) · Zbl 1069.34056 · doi:10.1016/j.chaos.2003.08.001
[30] Ge, Z. M.; Li, S. Y., Yang and Yin parameters in the Lorenz system, Nonlinear Dynamics, 62, 1-2, 105-117 (2010) · Zbl 1210.34065 · doi:10.1007/s11071-010-9702-x
[31] Liu, Y.; Barbosa, L. C., Periodic locking in coupled Lorenz systems, Physics Letters A, 197, 1, 13-18 (1995) · Zbl 1020.37509 · doi:10.1016/0375-9601(94)00887-U
[32] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Physical Review Letters, 64, 8, 821-824 (1990) · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[33] Salahshoor, K.; Hajisalehi, M. H.; Sefat, M. H., Nonlinear model identification and adaptive control of \(CO_2\) sequestration process in saline aquifers using artificial neural networks, Applied Soft Computing, 12, 11, 3379-3389 (2012) · doi:10.1016/j.asoc.2012.07.006
[34] Bhushan, B.; Singh, M., Adaptive control of DC motor using bacterial foraging algorithm, Applied Soft Computing, 11, 8, 4913-4920 (2011) · doi:10.1016/j.asoc.2011.06.008
[35] Ketata, R.; Rezgui, Y.; Derbel, N., Stability and robustness of fuzzy adaptive control of nonlinear systems, Applied Soft Computing Journal, 11, 1, 166-178 (2011) · doi:10.1016/j.asoc.2009.11.007
[36] Cerman, O.; Husek, P., Adaptive fuzzy sliding mode control for electro-hydraulic servo mechanism, Expert Systems with Applications, 39, 11, 10269-10277 (2012) · doi:10.1016/j.eswa.2012.02.172
[37] Khayyam, H.; Nahavandi, S.; Davis, S., Adaptive cruise control look-ahead system for energy management of vehicles, Expert Systems with Applications, 39, 3, 3874-3885 (2012) · doi:10.1016/j.eswa.2011.08.169
[38] Ge, Z. M.; Yu, J. K.; Chen, Y. T., Pragmatical asymptotical stability theorem with application to satellite system, Japanese Journal of Applied Physics,, 38, 10, 6178-6179 (1999) · doi:10.1143/JJAP.38.6178
[39] Ge, Z. M.; Yu, J. K., Pragmatical asymptotical stability theorems on partial region and for partial variables with applications to gyroscopic systems, Journal of Mechanics, 16, 4, 179-187 (2000) · doi:10.1017/S1727719100001842
[40] Matsushima, Y., Differentiable Manifolds (1972), Marcel Dekker · Zbl 0233.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.