×

State feedback \(L_1\)-gain control of positive 2-D continuous switched delayed systems via state-dependent switching. (English) Zbl 1346.93201

Summary: This paper investigates the stability and \(L_1\)-gain control of two-dimensional (2-D) continuous positive switched delayed systems. Firstly, by constructing an appropriate co-positive Lyapunov-Krasovskii functional, a sufficient condition for asymptotical stability of the system under consideration is derived. Secondly, \(L_1\)-gain performance analysis of the underlying system is investigated. Thirdly, a design methodology for state feedback controller is proposed to ensure that the closed-loop system is asymptotically stable with \(L_1\)-gain performance. Finally, an example is provided to show the effectiveness of the proposed method.

MSC:

93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93B52 Feedback control
93D15 Stabilization of systems by feedback

Software:

LMI toolbox
Full Text: DOI

References:

[1] S. Attasi, Systemes Lineaires Homogenes a Deux Indices (IRIA, Rapport, Laboria, 1973) · Zbl 0278.65124
[2] M. Benhayoun, A. Benzaouia, F. Mesquine, F. Tadeo, Stabilization of 2-D continuous systems with multi-delays and saturated control. in Proceedings of the 18th Mediterranean Conference on Control and Automation (2010), pp. 993-999 · Zbl 1202.93116
[3] M. Benhayoun, F. Mesquine, A. Benzaouia, Delay-dependent stabilizability of 2-D delayed continuous systems with saturating control. Circuits Syst. Signal Process. 32(6), 2723-2743 (2013) · doi:10.1007/s00034-013-9585-4
[4] L. Benvenuti, A. Santis, L. Farina, Positive Systems, Lecture Notes in Control and Information Sciences (Springer, Berlin, 2003) · Zbl 1031.93004
[5] A. Benzaouia, M. Benhayoun, F. Tadeo, State-feedback stabilization of 2-D continuous systems with delays. Int. J. Innov. Comput. Inf. Control 7(2), 977-988 (2011)
[6] A. Benzaouia, A. Hmamed, F. Tadeo, A. Hajjaji, Stabilisation of discrete 2-D time switching systems by state feedback control. Int. J. Syst. Sci. 42(3), 479-487 (2010) · Zbl 1209.93127 · doi:10.1080/00207720903576522
[7] R.N. Bracewell, Two-Dimensional Imaging (Prentice Hall, Upper Saddle River, 1995) · Zbl 0867.68113
[8] M.S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Autom. Control 43(4), 475-482 (1998) · Zbl 0904.93036 · doi:10.1109/9.664150
[9] S.P. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory (SIAM, Philadelphia, 1994) · Zbl 0816.93004 · doi:10.1137/1.9781611970777
[10] C. Briat, Robust stability and stabilization of uncertain linear positive systems via integral linear constraints: \[L_1\] L1-gain and \[L_\infty\] L∞-gain characterization. Int. J. Robust Nonlinear Control 23(17), 1932-1954 (2013) · Zbl 1278.93188 · doi:10.1002/rnc.2859
[11] S.F. Chen, Delay-dependent stability for 2-D systems with time-varying delay subject to state saturation in the Roesser model. Appl. Math. Comput. 216(9), 2613-2622 (2010) · Zbl 1197.34133
[12] X. Chen, J. Lam, P. Li, Z. Shu, \[l_1\] l1-induced norm and controller synthesis of positive systems. Automatica 49(5), 1377-1385 (2013) · Zbl 1319.93024 · doi:10.1016/j.automatica.2013.02.023
[13] S. Dashkovskiy, L. Naujok, Lyapunov-Razumikhin and Lyapunov-Krasovskii theorems for interconnected ISS time-delay systems. in Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems (2010), pp. 5-9
[14] C. Du, L. Xie, \[H_{\infty }H\]∞Control and Filtering of Two-Dimensional Systems (Springer, Berlin, 2002) · Zbl 1013.93001
[15] Z. Duan, Z. Xiang, \[H_2\] H2 output feedback controller design for discrete-time 2D switched systems. Trans. Inst. Meas. Control 36(1), 68-77 (2014) · doi:10.1177/0142331213485279
[16] Z. Duan, Z. Xiang, H.R. Karimi, Delay-dependent exponential stabilization of positive 2-D switched state-delayed systems in the Roesser model. Inf. Sci. 272, 173-184 (2014) · Zbl 1341.93063 · doi:10.1016/j.ins.2014.02.121
[17] C. El-Kasri, A. Hmamed, E.H. Tissir, F. Tadeo, Robust \[H_\infty H\]∞ filtering for uncertain two-dimensional continuous systems with time-varying delays. Multidimens. Syst. Sign. Process. 24(4), 685-706 (2013) · Zbl 1283.93279 · doi:10.1007/s11045-013-0242-7
[18] K. Fernando, Stability of 2-D State Space Systems (NAG Technical Report TR4/88, 1988)
[19] E. Fornasini, G. Marchesini, Doubly-indexed dynamical systems, state-space models and structural properties. Math. Syst. Theory 12(1), 59-72 (1978) · Zbl 0392.93034 · doi:10.1007/BF01776566
[20] E. Fridman, S.I. Niculescu, On complete Lyapunov-Krasovskii functional techniques for uncertain systems with fast-varying delays. Int. J. Robust Nonlinear Control 18(3), 364-374 (2008) · Zbl 1284.93206 · doi:10.1002/rnc.1230
[21] P. Gahinet, A. Nemirovskii, A.J. Laub, M. Chilali, The LMI control toolbox. in IEEE Conference on Decision and Control (1994), pp. 2038-2038 · Zbl 1287.93078
[22] M. Ghamgui, N. Yeganefar, O. Bachelier, D. Mehdi, Exponential stability conditions for 2-D continuous state-delayed systems. in 7th International Workshop on Multidimensional (nD) Systems (nDs) (2011), pp. 1-5 · Zbl 1341.93024
[23] I. Ghous, Z. Xiang, Robust state feedback \[H_\infty H\]∞ control for uncertain 2-D continuous state delayed systems in the Roesser model. Multidimens. Syst. Sign. Process. (2014). doi:10.1007/s11045-014-0301-8 · Zbl 1368.93150 · doi:10.1007/s11045-014-0301-8
[24] I. Ghous, Z. Xiang, \[H_\infty H\]∞ stabilization of 2-D discrete switched delayed systems represented by the Roesser model subject to actuator saturation. Trans. Inst. Meas. Control (2014). doi:10.1177/0142331214560805 · doi:10.1177/0142331214560805
[25] I. Ghous, Z. Xiang, H.R. Karimi, State feedback \[H_\infty H\]∞ control for 2-D switched delay systems with actuator saturation in the second FM model. Circuits Syst. Signal Process. 34(7), 2167-2192 (2015) · Zbl 1341.93025 · doi:10.1007/s00034-014-9960-9
[26] A. Hmamed, M. Alfidi, A. Benzaouia, F. Tadeo, LMI conditions for robust stability of 2-D linear discrete-time systems. Math. Probl. Eng. 2008, 356124 (2008). doi:10.1155/2008/356124 · Zbl 1151.93415
[27] A. Hmamed, F. Mesquine, F. Tadeo, M. Benhayoun, A. Benzaouia, Stabilization of 2-D saturated systems by state feedback control. Multidimens. Syst. Sign. Process. 21(3), 277-292 (2010) · Zbl 1202.93116 · doi:10.1007/s11045-010-0107-2
[28] S. Huang, Z. Xiang, Delay-dependent stability for discrete 2-D switched systems with state delays in the Roesser model. Circuits Syst. Signal Process. 32(6), 2821-2837 (2013) · doi:10.1007/s00034-013-9600-9
[29] A. Jadbabaie, J. Lin, A.S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988-1001 (2003) · Zbl 1364.93514 · doi:10.1109/TAC.2003.812781
[30] T. Kaczorek, Two-Dimensional Linear Systems (Springer, Berlin, 1985) · Zbl 0593.93031
[31] T. Kaczorek, Positive 1D and 2D Systems (Springer, London, 2002) · Zbl 1005.68175 · doi:10.1007/978-1-4471-0221-2
[32] T. Kaczorek, A realization problem for positive continuous-time systems with reduced numbers of delays. Int. J. Appl. Math. Comput. Sci 16(3), 325-331 (2006) · Zbl 1136.93317
[33] T. Kaczorek, The choice of the forms of Lyapunov functions for a positive 2-D Roesser model. Int. J. Appl. Math. Comput. Sci 17(4), 471-475 (2007) · Zbl 1234.93089 · doi:10.2478/v10006-007-0039-7
[34] T. Kaczorek, Asymptotic stability of positive 2-D linear systems with delays. Bull. Pol. Acad. Sci. Tech. Sci 57(2), 133-138 (2009)
[35] T. Kaczorek, LMI approach to stability of 2-D positive systems. Multidimens. Syst. Sign. Process. 20(1), 39-54 (2009) · Zbl 1169.93022 · doi:10.1007/s11045-008-0050-7
[36] T. Kaczorek, Practical stability and asymptotic stability of positive fractional 2-D linear systems. Asian J. Control 12(2), 200-207 (2010) · doi:10.1002/asjc.165
[37] V.L. Kharitonov, Robust stability analysis of time delay systems: a survey. Annu. Rev. Control 23, 185-196 (1999) · doi:10.1016/S1367-5788(99)90087-1
[38] D. Liberzon, A.S. Morse, Basic problems in stability and design of switched systems. IEEE Control Syst. 19(5), 59-70 (1999) · Zbl 1384.93064 · doi:10.1109/37.793443
[39] H. Lin, P.J. Antsaklis, Stability and stabilizability of switched linear systems: a survey of recent results. IEEE Trans. Autom. Control 54(2), 308-322 (2009) · Zbl 1367.93440 · doi:10.1109/TAC.2008.2012009
[40] S. Liu, Z. Xiang, Exponential \[L_1\] L1 output tracking control for positive switched linear systems with time-varying delays. Nonlinear Anal. Hybrid Syst. 11, 118-128 (2014) · Zbl 1291.93272 · doi:10.1016/j.nahs.2013.07.002
[41] O. Mason, R. Shorten, On linear copositive Lyapunov functions and the stability of switched positive linear systems. IEEE Trans. Autom. Control 52(7), 1346-1349 (2007) · Zbl 1366.34077 · doi:10.1109/TAC.2007.900857
[42] A. Papachristodoulou, M. Peet, S. Lall, Constructing Lyapunov-Krasovskii functionals for linear time delay systems. in Proceedings of the American Control Conference (2005), pp. 2845-2850
[43] W. Paszke, J. Lam, K. Gałkowski, S. Xu, Z. Lin, Robust stability and stabilisation of 2-D discrete state-delayed systems. Syst. Control Lett. 51(3-4), 277-291 (2004) · Zbl 1157.93472 · doi:10.1016/j.sysconle.2003.09.003
[44] R.P. Roesser, A discrete state-space model for linear image processing. IEEE Trans. Autom. Control 20(1), 1-10 (1975) · Zbl 0304.68099 · doi:10.1109/TAC.1975.1100844
[45] R. Shorten, K. Narendra, On the stability and existence of common Lyapunov functions for stable linear switching systems. in Proceedings of the 37th IEEE Conference on Decision and Control (1998), pp. 3723-3724 · Zbl 1283.93215
[46] R. Shorten, F. Wirth, D. Leith, A positive systems model of TCP-like congestion control: asymptotic results. IEEE/ACM Trans. Netw. 14(3), 616-629 (2006) · doi:10.1109/TNET.2006.876178
[47] H.R. Shaker, F. Shaker, Lyapunov stability for continuous-time multidimensional nonlinear systems. Nonlinear Dyn. 75(4), 717-724 (2014) · Zbl 1283.93215 · doi:10.1007/s11071-013-1098-y
[48] X. Su, L. Wu, P. Shi, C.P. Chen, Model approximation for fuzzy switched systems with stochastic perturbation. IEEE Trans. Fuzzy Syst. (2014). doi:10.1109/TFUZZ.2014.2362153 · doi:10.1109/TFUZZ.2014.2362153
[49] X. Su, L. Wu, P. Shi, Y.D. Song, A novel approach to output feedback control of fuzzy stochastic systems. Automatica 50(12), 3268-3275 (2014) · Zbl 1309.93092 · doi:10.1016/j.automatica.2014.10.053
[50] Y. Tong, C. Wang, L. Zhang, Stabilisation of discrete-time switched positive linear systems via time-and state-dependent switching laws. IET Control Theory Appl. 6(11), 1603-1609 (2012) · doi:10.1049/iet-cta.2011.0293
[51] M. Xiang, Z. Xiang, Stability, \[L_1\] L1-gain and control synthesis for positive switched systems with time-varying delay. Nonlinear Anal. Hybrid Syst. 9(1), 9-17 (2013) · Zbl 1287.93078 · doi:10.1016/j.nahs.2013.01.001
[52] R. Yang, G.P. Liu, P. Shi, C. Thomas, M.V. Basin, Predictive output feedback control for networked control systems. IEEE Trans. Ind. Electron. 61(1), 512-520 (2014) · doi:10.1109/TIE.2013.2248339
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.