×

Improved distributed model predictive control with control planning set. (English) Zbl 1346.93160

Summary: We focus on distributed Model Predictive Control (MPC) algorithm. Each distributed model predictive controller communicates with the others in order to compute the control sequence. But there are not enough communication resources to exchange information between the subsystems because of the limited communication network. This paper presents an improved distributed model predictive control scheme with control planning set. Control planning set algorithm approximates the future control sequences by designed planning set, which can reduce the exchange information among the controllers and can also decrease the distributed MPC controller calculation demand without degrading the whole system performance much. The stability and system performance analysis for distributed model predictive control are given. Simulations of the four-tank control problem and multi-robot multi-target tracking problem are illustrated to verify the effectiveness of the proposed control algorithm.

MSC:

93B40 Computational methods in systems theory (MSC2010)
93A14 Decentralized systems
93D99 Stability of control systems

References:

[1] Eduardo, F.; Bordons, C., Model Predictive Control (2013), Berlin, Germany: Springer, Berlin, Germany
[2] Qin, S. J.; Badgwell, T. A., A survey of industrial model predictive control technology, Control Engineering Practice, 11, 7, 733-764 (2003) · doi:10.1016/s0967-0661(02)00186-7
[3] Morari, M.; Lee, J. H., Model predictive control: past, present and future, Computers & Chemical Engineering, 23, 4-5, 667-682 (1999) · doi:10.1016/s0098-1354(98)00301-9
[4] Giselsson, P.; Rantzer, A., On feasibility, stability and performance in distributed model predictive control, IEEE Transactions on Automatic Control, 59, 4, 1031-1036 (2014) · Zbl 1360.93389 · doi:10.1109/tac.2013.2285779
[5] Farina, M.; Betti, G.; Giulioni, L.; Scattolini, R., An approach to distributed predictive control for tracking-theory and applications, IEEE Transactions on Control Systems Technology, 22, 4, 1558-1566 (2014) · doi:10.1109/tcst.2013.2288409
[6] Ferramosca, A.; Limon, D.; Alvarado, I.; Camacho, E. F., Cooperative distributed {MPC} for tracking, Automatica. A Journal of IFAC, the International Federation of Automatic Control, 49, 4, 906-914 (2013) · Zbl 1284.93099 · doi:10.1016/j.automatica.2013.01.019
[7] Zhao, M.; Ding, B., Distributed model predictive control for constrained nonlinear systems with decoupled local dynamics, ISA Transactions, 55, 1-12 (2015) · doi:10.1016/j.isatra.2014.07.012
[8] Scattolini, R., Architectures for distributed and hierarchical model predictive control—a review, Journal of Process Control, 19, 5, 723-731 (2009) · doi:10.1016/j.jprocont.2009.02.003
[9] Negenborn, R. R.; Maestre, J. M., Distributed model predictive control: an overview and roadmap of future research opportunities, IEEE Control Systems, 34, 4, 87-97 (2014) · Zbl 1476.93073 · doi:10.1109/MCS.2014.2320397
[10] Liu, J.; Chen, X.; de la Peña, D. M.; Christofides, P. D., Sequential and iterative architectures for distributed model predictive control of nonlinear process systems, AIChE Journal, 56, 8, 2137-2149 (2010) · doi:10.1002/aic.12155
[11] Li, S.; Zhang, Y.; Zhu, Q., Nash-optimization enhanced distributed model predictive control applied to the Shell benchmark problem, Information Sciences, 170, 2-4, 329-349 (2005) · Zbl 1068.93021 · doi:10.1016/j.ins.2004.03.008
[12] Zhang, Y.; Li, S., Networked model predictive control based on neighbourhood optimization for serially connected large-scale processes, Journal of Process Control, 17, 1, 37-50 (2007) · doi:10.1016/j.jprocont.2006.08.009
[13] Rawlings, J. B.; Stewart, B. T., Coordinating multiple optimization-based controllers: new opportunities and challenges, Journal of Process Control, 18, 9, 839-845 (2008) · doi:10.1016/j.jprocont.2008.06.005
[14] Giovanini, L., Game approach to distributed model predictive control, IET Control Theory and Applications, 5, 15, 1729-1739 (2011) · doi:10.1049/iet-cta.2010.0634
[15] Maestre, J. M.; Muñoz de la Peña, D.; Camacho, E. F., Distributed model predictive control based on a cooperative game, Optimal Control Applications & Methods, 32, 2, 153-176 (2011) · Zbl 1225.93045 · doi:10.1002/oca.940
[16] Camponogara, E.; Jia, D.; Krogh, B. H.; Talukdar, S., Distributed model predictive control, IEEE Control Systems Magazine, 22, 1, 44-52 (2002) · doi:10.1109/37.980246
[17] Farina, M.; Scattolini, R., Distributed non-cooperative MPC with neighbor-to-neighbor communication ?, Proceedings of the 18th IFAC World Congress · doi:10.3182/20110828-6-it-1002.01092
[18] Stewart, B. T.; Venkat, A. N.; Rawlings, J. B.; Wright, S. J.; Pannocchia, G., Cooperative distributed model predictive control, Systems & Control Letters, 59, 8, 460-469 (2010) · Zbl 1198.93085 · doi:10.1016/j.sysconle.2010.06.005
[19] Vaccarini, M.; Longhi, S.; Reze Katebi, M., Unconstrained networked decentralized model predictive control, Journal of Process Control, 19, 328-339 (2009)
[20] Wallen, A.; Astrom, K. J., Pulse-step control, Proceedings of the 15th IFAC Triennial World Congress
[21] Johansson, K. H.; Nunes, J. L. R., A multivariable laboratory process with an adjustable zero, Proceedings of the American Control Conference (ACC ’98) · doi:10.1109/acc.1998.702986
[22] Mercangöz, M.; Doyle, F. J., Distributed model predictive control of an experimental four-tank system, Journal of Process Control, 17, 3, 297-308 (2007) · doi:10.1016/j.jprocont.2006.11.003
[23] Alipouri, Y.; Poshtan, J., Optimal controller design using discrete linear model for a four tank benchmark process, ISA Transactions, 52, 5, 644-651 (2013) · doi:10.1016/j.isatra.2013.04.010
[24] Bhardwaj, M.; Chandrakasan, A. P., Bounding the lifetime of sensor networks via optimal role assignments, Proceedings of the 21st IEEE Annual Joint Conference of the IEEE Computer and Communications Societies
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.